Computing Cartograms with Optimal Complexity

Md Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, Torsten Ueckerdt

Research output: Contribution to journalArticle

25 Scopus citations

Abstract

In a rectilinear dual of a planar graph vertices are represented by simple rectilinear polygons, while edges are represented by side-contact between the corresponding polygons. A rectilinear dual is called a cartogram if the area of each region is equal to a pre-specified weight. The complexity of a cartogram is determined by the maximum number of corners (or sides) required for any polygon. In a series of papers the polygonal complexity of such representations for maximal planar graphs has been reduced from the initial 40 to 34, then to 12 and very recently to the currently best known 10. Here we describe a construction with 8-sided polygons, which is optimal in terms of polygonal complexity as 8-sided polygons are sometimes necessary. Specifically, we show how to compute the combinatorial structure and how to refine it into an area-universal rectangular layout in linear time. The exact cartogram can be computed from the area-universal layout with numerical iteration, or can be approximated with a hill-climbing heuristic. We also describe an alternative construction of cartograms for Hamiltonian maximal planar graphs, which allows us to directly compute the cartograms in linear time. Moreover, we prove that even for Hamiltonian graphs 8-sided rectilinear polygons are necessary, by constructing a non-trivial lower bound example. The complexity of the cartograms can be reduced to 6 if the Hamiltonian path has the extra property that it is one-legged, as in outer-planar graphs. Thus, we have optimal representations (in terms of both polygonal complexity and running time) for Hamiltonian maximal planar and maximal outer-planar graphs. Finally we address the problem of constructing small-complexity cartograms for 4-connected graphs (which are Hamiltonian). We first disprove a conjecture, posed by two set of authors, that any 4-connected maximal planar graph has a one-legged Hamiltonian cycle, thereby invalidating an attempt to achieve a polygonal complexity 6 in cartograms for this graph class. We also prove that it is NP-hard to decide whether a given 4-connected plane graph admits a cartogram with respect to a given weight function.

Original languageEnglish (US)
Pages (from-to)784-810
Number of pages27
JournalDiscrete and Computational Geometry
Volume50
Issue number3
DOIs
StatePublished - Oct 1 2013

Keywords

  • Cartograms
  • Contact graphs
  • Geometric representations
  • Planar graphs

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Computing Cartograms with Optimal Complexity'. Together they form a unique fingerprint.

  • Cite this

    Alam, M. J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S. G., & Ueckerdt, T. (2013). Computing Cartograms with Optimal Complexity. Discrete and Computational Geometry, 50(3), 784-810. https://doi.org/10.1007/s00454-013-9521-1