Conformational restrictions of biologically active peptides via amino acid side chain groups

Research output: Contribution to journalShort survey

381 Scopus citations

Abstract

Determining the relationships between conformation and biological activity in peptide hormones and neurotransmitters is an important goal of contemporary biology. A major difficulty in these studies is the conformational flexibility of most peptides and the high dependence of the conformations on environment. The question arises whether conformations determined in solution are relevant to those important to the peptide at the membrane receptor(s). One recent approach to overcome these difficulties has been the use of conformational constraints by covalent bonding of side chain groups of residues in the peptide. In this manner linear peptides are rendered cyclic, and cyclic peptides are further conformationally constrained either by ring contractions or by other conformational constraints. Biologically active peptides specifically designed by this approach have been found to possess several useful properties including: 1) greater conformational integrity; 2) increased agonist or antagonist potency; 3) prolonged biological activity; 4) increased enzymatic stability; and 5) increased specificity for a particular receptor. Careful applications of this approach have provided important new design features for peptide structure-function studies, and new insights into peptide conformation-activity relationships for oxytocin, somatostatin, enkephalin, bradykinin, vasopressin, and other biologically active peptides.

Original languageEnglish (US)
Pages (from-to)189-199
Number of pages11
JournalLife Sciences
Volume31
Issue number3
DOIs
StatePublished - Jul 19 1982

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Conformational restrictions of biologically active peptides via amino acid side chain groups'. Together they form a unique fingerprint.

  • Cite this