TY - JOUR
T1 - Construction of High-Quality SnO2@MoS2 Nanohybrids for Promising Photoelectrocatalytic Applications
AU - Zhang, Xinyu
AU - Yang, Yawei
AU - Ding, Shujiang
AU - Que, Wenxiu
AU - Zheng, Zhiping
AU - Du, Yaping
PY - 2017/3/20
Y1 - 2017/3/20
N2 - High-quality three-dimensional (3D) hierarchical SnO2@MoS2 nanohybrids were successfully obtained via a facile but effective wet chemistry synthesis method. Meanwhile, the SnO2@MoS2 hybrid film was fabricated through an electrophoretic deposition method to promote photoelectrocatalytic (PEC) efficiency and solve the recovery problem. Compared with the pure SnO2 and MoS2 films, the SnO2@MoS2 heterostructures could decrease the rate of the photoelectron-hole pair’s recombination, which resulted in the superior PEC pollutant degradation and water splitting activities. Meanwhile, the SnO2@MoS2 hybrid films with well-defined 3D hierarchical configurations have large surface areas, abundant active edge sites, and defects on the basal surfaces, which were also advantageous for the PEC activities (for pollutant degradation, apparent rate constant k = 5.91 h-1; for water splitting, onset potential = −0.05 V and current density = 10 mA/cm2). Therefore, the SnO2@MoS2 hybrid film proved to be a superior structure for PEC applications.
AB - High-quality three-dimensional (3D) hierarchical SnO2@MoS2 nanohybrids were successfully obtained via a facile but effective wet chemistry synthesis method. Meanwhile, the SnO2@MoS2 hybrid film was fabricated through an electrophoretic deposition method to promote photoelectrocatalytic (PEC) efficiency and solve the recovery problem. Compared with the pure SnO2 and MoS2 films, the SnO2@MoS2 heterostructures could decrease the rate of the photoelectron-hole pair’s recombination, which resulted in the superior PEC pollutant degradation and water splitting activities. Meanwhile, the SnO2@MoS2 hybrid films with well-defined 3D hierarchical configurations have large surface areas, abundant active edge sites, and defects on the basal surfaces, which were also advantageous for the PEC activities (for pollutant degradation, apparent rate constant k = 5.91 h-1; for water splitting, onset potential = −0.05 V and current density = 10 mA/cm2). Therefore, the SnO2@MoS2 hybrid film proved to be a superior structure for PEC applications.
UR - http://www.scopus.com/inward/record.url?scp=85015751941&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015751941&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.6b02914
DO - 10.1021/acs.inorgchem.6b02914
M3 - Article
AN - SCOPUS:85015751941
VL - 56
SP - 3386
EP - 3393
JO - Inorganic Chemistry
JF - Inorganic Chemistry
SN - 0020-1669
IS - 6
ER -