Control of porosity in SiO2:PDMS Polycerams through variations in sol-gel processing and polymer content

T. Suratwala, K. Davidson, Z. Gardlund, D. R. Uhlmann

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

A series of optically transparent SiO2: Polydimethylsiloxane (PDMS) Polyceram monoliths have been synthesized by two-step acid/base sol-gel processes. Two different processing routes are discussed and compared; one synthetic route (Route 1) utilizes lower water content, shorter reflux times, and faster drying conditions compared to the other synthetic route (Route 2). The Route 1 Polycerams were all essentially non-porous at all PDMS contents examined (20-80 volume % PDMS). In contrast, the porosity of the Route 2 Polycerams varied dramatically as a function of PDMS content. The surface area and pore volume for a 0% PDMS Route 2 Polyceram were 573 m2/gm and 0.59 cm3/gm, respectively; the surface area and pore volume decreased with increasing PDMS content. The amount of porosity within the Polycerams is proposed to be controlled by the relative rates of condensation and evaporation during processing and by the amount of PDMS trapped in the pores. This ideas supported by the differences in the drying behavior with processing and by the structural information obtained by magic angle spinning solid-state 29Si NMR of the Polyceram monoliths. Quantitative evaluation of the 29Si NMR and porosity data are utilized to formulate structural models of these Polycerams. The structural models are then specifically used to describe the effect of porosity on the photostabilization of a laser dye doped within these Polyceram monoliths.

Original languageEnglish (US)
Pages (from-to)36-47
Number of pages12
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3136
DOIs
StatePublished - Dec 1 1997
EventSol-Gel Optics IV - San Diego, CA, United States
Duration: Jul 30 1997Aug 1 1997

Keywords

  • MAS Si NMR
  • N adsorption BET
  • Photostability
  • Polycerams
  • Polydimethylsiloxane
  • Porosity
  • Pyrromethene 567
  • Surface Area

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Control of porosity in SiO<sub>2</sub>:PDMS Polycerams through variations in sol-gel processing and polymer content'. Together they form a unique fingerprint.

Cite this