Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

M. Ghods, M. Lauer, R. N. Grugel, S. N. Tewari, David R Poirier

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Hypoeutectic Al-19  wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7  wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

Original languageEnglish (US)
Pages (from-to)135-145
Number of pages11
JournalJournal of Crystal Growth
Volume459
DOIs
StatePublished - Feb 1 2017

Keywords

  • A1. Computer simulation
  • A1. Convection
  • A1. Cross-section decrease
  • A1. Directional solidification
  • A1. Segregation
  • B1. Aluminum alloys

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si'. Together they form a unique fingerprint.

  • Cite this