Corneal surface asphericity, roughness, and transverse contraction after uniform scanning excimer laser ablation

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Purpose. To examine the interaction between the excimer laser and residual tissue. Methods. Ten cadaveric porcine eyes with exposed corneal stroma and plastic test spheres underwent uniform 6-mm ablation with a scanning excimer laser. Corneal profilometry of the central 3 mm was measured with submicrometer resolution optical interferometry, before and after uniform excimer ablation. Eleven surface-marked eyes were photomicrographed before and after excimer ablation. Images were superimposed, and mark positional changes were measured. Results. Uniform scanning excimer laser ablation of the corneal stroma produces a significant central steepening and peripheral flattening in the central 3-mm of the diameter. The central 1-mm corneal curvature radius (r) decreased from r = 10.07 ± 0.44 (95% CI) to 7.22 ± 0.30 mm, and the central 2-mm radius decreased from r = 10.16 ± 0.44 to 8.10 ± 0.43 mm. Q values, measuring asphericity in the 2-mm radius of the central cornea, were significantly lower before than after ablation (-5.03 ± 4.01 vs. -52.4 ± 18.7). Surface roughness increased significantly from 0.65 ± 0.06 to 1.75 ± 0.32 μm after ablation. The central 2 mm of the stromal surface contracted by 2.21% ± 0.80% at a sustained temperature of 5°C. Ablation of plastic spheres produced no significant change. Conclusions. The excimer laser interacts with the nonablated residual stromal surface in a characteristic fashion not seen with isotropic, inorganic material. Increases in asphericity, surface roughness, surface contraction, and stromal morphologic changes are supportive of this interaction. The surface changes demonstrated may be indicative of temperature-induced transverse collagen fibril contraction and stress redistribution, or the ablation threshold of the stromal surface may be altered. This phenomenon may be of increased importance using lasers with increased thermal load.

Original languageEnglish (US)
Pages (from-to)1296-1305
Number of pages10
JournalInvestigative Ophthalmology and Visual Science
Volume53
Issue number3
DOIs
StatePublished - Mar 2012

Fingerprint

Excimer Lasers
Laser Therapy
Corneal Stroma
Plastics
Interferometry
Temperature
Cornea
Lasers
Swine
Collagen
Hot Temperature

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience
  • Medicine(all)

Cite this

@article{381fd398e04e43f591d8c30a6b0cf2bb,
title = "Corneal surface asphericity, roughness, and transverse contraction after uniform scanning excimer laser ablation",
abstract = "Purpose. To examine the interaction between the excimer laser and residual tissue. Methods. Ten cadaveric porcine eyes with exposed corneal stroma and plastic test spheres underwent uniform 6-mm ablation with a scanning excimer laser. Corneal profilometry of the central 3 mm was measured with submicrometer resolution optical interferometry, before and after uniform excimer ablation. Eleven surface-marked eyes were photomicrographed before and after excimer ablation. Images were superimposed, and mark positional changes were measured. Results. Uniform scanning excimer laser ablation of the corneal stroma produces a significant central steepening and peripheral flattening in the central 3-mm of the diameter. The central 1-mm corneal curvature radius (r) decreased from r = 10.07 ± 0.44 (95{\%} CI) to 7.22 ± 0.30 mm, and the central 2-mm radius decreased from r = 10.16 ± 0.44 to 8.10 ± 0.43 mm. Q values, measuring asphericity in the 2-mm radius of the central cornea, were significantly lower before than after ablation (-5.03 ± 4.01 vs. -52.4 ± 18.7). Surface roughness increased significantly from 0.65 ± 0.06 to 1.75 ± 0.32 μm after ablation. The central 2 mm of the stromal surface contracted by 2.21{\%} ± 0.80{\%} at a sustained temperature of 5°C. Ablation of plastic spheres produced no significant change. Conclusions. The excimer laser interacts with the nonablated residual stromal surface in a characteristic fashion not seen with isotropic, inorganic material. Increases in asphericity, surface roughness, surface contraction, and stromal morphologic changes are supportive of this interaction. The surface changes demonstrated may be indicative of temperature-induced transverse collagen fibril contraction and stress redistribution, or the ablation threshold of the stromal surface may be altered. This phenomenon may be of increased importance using lasers with increased thermal load.",
author = "McCafferty, {Sean J.} and Schwiegerling, {James T} and Enikov, {Eniko T}",
year = "2012",
month = "3",
doi = "10.1167/iovs.11-9267",
language = "English (US)",
volume = "53",
pages = "1296--1305",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "3",

}

TY - JOUR

T1 - Corneal surface asphericity, roughness, and transverse contraction after uniform scanning excimer laser ablation

AU - McCafferty, Sean J.

AU - Schwiegerling, James T

AU - Enikov, Eniko T

PY - 2012/3

Y1 - 2012/3

N2 - Purpose. To examine the interaction between the excimer laser and residual tissue. Methods. Ten cadaveric porcine eyes with exposed corneal stroma and plastic test spheres underwent uniform 6-mm ablation with a scanning excimer laser. Corneal profilometry of the central 3 mm was measured with submicrometer resolution optical interferometry, before and after uniform excimer ablation. Eleven surface-marked eyes were photomicrographed before and after excimer ablation. Images were superimposed, and mark positional changes were measured. Results. Uniform scanning excimer laser ablation of the corneal stroma produces a significant central steepening and peripheral flattening in the central 3-mm of the diameter. The central 1-mm corneal curvature radius (r) decreased from r = 10.07 ± 0.44 (95% CI) to 7.22 ± 0.30 mm, and the central 2-mm radius decreased from r = 10.16 ± 0.44 to 8.10 ± 0.43 mm. Q values, measuring asphericity in the 2-mm radius of the central cornea, were significantly lower before than after ablation (-5.03 ± 4.01 vs. -52.4 ± 18.7). Surface roughness increased significantly from 0.65 ± 0.06 to 1.75 ± 0.32 μm after ablation. The central 2 mm of the stromal surface contracted by 2.21% ± 0.80% at a sustained temperature of 5°C. Ablation of plastic spheres produced no significant change. Conclusions. The excimer laser interacts with the nonablated residual stromal surface in a characteristic fashion not seen with isotropic, inorganic material. Increases in asphericity, surface roughness, surface contraction, and stromal morphologic changes are supportive of this interaction. The surface changes demonstrated may be indicative of temperature-induced transverse collagen fibril contraction and stress redistribution, or the ablation threshold of the stromal surface may be altered. This phenomenon may be of increased importance using lasers with increased thermal load.

AB - Purpose. To examine the interaction between the excimer laser and residual tissue. Methods. Ten cadaveric porcine eyes with exposed corneal stroma and plastic test spheres underwent uniform 6-mm ablation with a scanning excimer laser. Corneal profilometry of the central 3 mm was measured with submicrometer resolution optical interferometry, before and after uniform excimer ablation. Eleven surface-marked eyes were photomicrographed before and after excimer ablation. Images were superimposed, and mark positional changes were measured. Results. Uniform scanning excimer laser ablation of the corneal stroma produces a significant central steepening and peripheral flattening in the central 3-mm of the diameter. The central 1-mm corneal curvature radius (r) decreased from r = 10.07 ± 0.44 (95% CI) to 7.22 ± 0.30 mm, and the central 2-mm radius decreased from r = 10.16 ± 0.44 to 8.10 ± 0.43 mm. Q values, measuring asphericity in the 2-mm radius of the central cornea, were significantly lower before than after ablation (-5.03 ± 4.01 vs. -52.4 ± 18.7). Surface roughness increased significantly from 0.65 ± 0.06 to 1.75 ± 0.32 μm after ablation. The central 2 mm of the stromal surface contracted by 2.21% ± 0.80% at a sustained temperature of 5°C. Ablation of plastic spheres produced no significant change. Conclusions. The excimer laser interacts with the nonablated residual stromal surface in a characteristic fashion not seen with isotropic, inorganic material. Increases in asphericity, surface roughness, surface contraction, and stromal morphologic changes are supportive of this interaction. The surface changes demonstrated may be indicative of temperature-induced transverse collagen fibril contraction and stress redistribution, or the ablation threshold of the stromal surface may be altered. This phenomenon may be of increased importance using lasers with increased thermal load.

UR - http://www.scopus.com/inward/record.url?scp=84860616257&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84860616257&partnerID=8YFLogxK

U2 - 10.1167/iovs.11-9267

DO - 10.1167/iovs.11-9267

M3 - Article

C2 - 22297493

AN - SCOPUS:84860616257

VL - 53

SP - 1296

EP - 1305

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 3

ER -