TY - JOUR
T1 - Coupling carbon capture from a power plant with semi-automated open raceway ponds for microalgae cultivation
AU - Acedo, Margarita
AU - Gonzalez Cena, Juan R.
AU - Kiehlbaugh, Kasi M.
AU - Ogden, Kimberly L.
N1 - Funding Information:
This work was supported through the Regional Algal Feedstock Testbed project, U.S. Department of Energy DE-EE0006269. We also thank Esteban Jimenez, Jessica Peebles, Francisco Acedo, Jose Cisneros, RAFT Team, Mark Mansfield, UA power plant staff, and TEP power plant staff for all their help.
PY - 2020
Y1 - 2020
N2 - In the United States, 35% of the total carbon dioxide (CO2) emissions come from the electrical power industry, of which 30% represent natural gas electricity generation. Microalgae can biofix CO2 10 to 15 times faster than plants and convert algal biomass to products of interest, such as biofuels. Thus, this study presents a protocol that demonstrates the potential synergies of microalgae cultivation with a natural gas power plant situated in the southwestern United States in a hot semi-arid climate. State-of-the-art technologies are used to enhance carbon capture and utilization via the green algal species Chlorella sorokiniana, which can be further processed into biofuel. We describe a protocol involving a semi-automated open raceway pond and discuss the results of its performance when it was tested at the Tucson Electric Power plant, in Tucson, Arizona. Flue gas was used as the main carbon source to control pH, and Chlorella sorokiniana was cultivated. An optimized medium was used to grow the algae. The amount of CO2 added to the system as a function of time was closely monitored. Additionally, other physicochemical factors affecting algal growth rate, biomass productivity, and carbon fixation were monitored, including optical density, dissolved oxygen (DO), electroconductivity (EC), and air and pond temperatures. The results indicate that a microalgae yield of up to 0.385 g/L ash-free dry weight is attainable, with a lipid content of 24%. Leveraging synergistic opportunities between CO2 emitters and algal farmers can provide the resources required to increase carbon capture while supporting the sustainable production of algal biofuels and bioproducts.
AB - In the United States, 35% of the total carbon dioxide (CO2) emissions come from the electrical power industry, of which 30% represent natural gas electricity generation. Microalgae can biofix CO2 10 to 15 times faster than plants and convert algal biomass to products of interest, such as biofuels. Thus, this study presents a protocol that demonstrates the potential synergies of microalgae cultivation with a natural gas power plant situated in the southwestern United States in a hot semi-arid climate. State-of-the-art technologies are used to enhance carbon capture and utilization via the green algal species Chlorella sorokiniana, which can be further processed into biofuel. We describe a protocol involving a semi-automated open raceway pond and discuss the results of its performance when it was tested at the Tucson Electric Power plant, in Tucson, Arizona. Flue gas was used as the main carbon source to control pH, and Chlorella sorokiniana was cultivated. An optimized medium was used to grow the algae. The amount of CO2 added to the system as a function of time was closely monitored. Additionally, other physicochemical factors affecting algal growth rate, biomass productivity, and carbon fixation were monitored, including optical density, dissolved oxygen (DO), electroconductivity (EC), and air and pond temperatures. The results indicate that a microalgae yield of up to 0.385 g/L ash-free dry weight is attainable, with a lipid content of 24%. Leveraging synergistic opportunities between CO2 emitters and algal farmers can provide the resources required to increase carbon capture while supporting the sustainable production of algal biofuels and bioproducts.
UR - http://www.scopus.com/inward/record.url?scp=85090107497&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090107497&partnerID=8YFLogxK
U2 - 10.3791/61498
DO - 10.3791/61498
M3 - Article
C2 - 32865530
AN - SCOPUS:85090107497
VL - 2020
SP - 1
EP - 21
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
SN - 1940-087X
IS - 162
M1 - e61498
ER -