Covert single-hop communication in a wireless network with distributed artificial noise generation

Ramin Soltani, Boulat Bash, Dennis Goeckel, Saikat Guha, Don Towsley

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations

Abstract

Covert communication, also known as low probability of detection (LPD) communication, prevents the adversary from knowing that a communication is taking place. Recent work has demonstrated that, in a three-party scenario with a transmitter (Alice), intended recipient (Bob), and adversary (Warden Willie), the maximum number of bits that can be transmitted reliably from Alice to Bob without detection by Willie, when additive white Gaussian noise (AWGN) channels exist between all parties, is on the order of the square root of the number of channel uses. In this paper, we begin consideration of network scenarios by studying the case where there are additional 'friendly' nodes present in the environment that can produce artificial noise to aid in hiding the communication. We establish achievability results by considering constructions where the system node closest to the warden produces artificial noise and demonstrate a significant improvement in the throughput achieved covertly, without requiring close coordination between Alice and the noise-generating node. Conversely, under mild restrictions on the communication strategy, we demonstrate no higher covert throughput is possible. Extensions to the consideration of the achievable covert throughput when multiple wardens randomly located in the environment collaborate to attempt detection of the transmitter are also considered.

Original languageEnglish (US)
Title of host publication2014 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1078-1085
Number of pages8
ISBN (Electronic)9781479980093
DOIs
StatePublished - Jan 30 2014
Event2014 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2014 - Monticello, United States
Duration: Sep 30 2014Oct 3 2014

Publication series

Name2014 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2014

Other

Other2014 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2014
CountryUnited States
CityMonticello
Period9/30/1410/3/14

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Covert single-hop communication in a wireless network with distributed artificial noise generation'. Together they form a unique fingerprint.

Cite this