Critical pollution levels in Umguza River, Zimbabwe

A. Chinyama, R. Ncube, Wendell P Ela

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In most countries worldwide regulatory bodies set effluent discharge limits into rivers and other natural water bodies. These limits specify the maximum permissible concentration of defined pollutants that may be discharged into the water body. This limit is conceptually based on the self-purification (assimilative) capacity of the receiving water. However, this self-purification constant is itself a function of the water's pollutant loading. Umguza River situated south west of Zimbabwe, is fed by tributaries that drain an urban catchment and as such is prone to pollution due to human activities in the catchment. This study investigated the levels of pollution in Umguza River that would affect its self-purification capacity. This was achieved by characterising the spatial distribution of a selected range of water quality parameters as well as determining the self-purification capacity of a stretch of the river. Critical pollutant concentrations were determined for some of the parameters that showed high values along the stretch. The selected parameters of interest were dissolved oxygen, suspended solids, phosphates, nitrates, COD, turbidity, ammonia, pH, alkalinity and temperature. The study was carried out from January 2014 to April 2014. The self-purification capacity was determined using a formula that compares the mass flux of a pollutant upstream and downstream of the selected stretch of the river. Statistical analysis was used to establish relationships between the pollutants and the self-purification capacity of the river. The study found that the levels of ammonia and phosphates were very high compared to the regulated limits (2 mg/l vs 0.5 mg/l; and 8 mg/l vs 0.5 mg/l respectively). It was also found that the self-purification capacity varied significantly across pollutants. It was therefore concluded that a critical pollutant concentration exists above which the river completely loses its natural ability to assimilate and decrease its pollutant load over time. It was also concluded that the self-purification capacity depends on the pollutant of concern in the river. It is recommended that the self-purification capacity of a river be determined before regulatory bodies set effluent discharge limits. It is also recommended that the water quality of water bodies draining pollution prone catchments be monitored regularly, besides just monitoring the discharge points.

Original languageEnglish (US)
JournalPhysics and Chemistry of the Earth
DOIs
StateAccepted/In press - Mar 17 2015

Fingerprint

Zimbabwe
self purification
pollution
purification
rivers
Purification
contaminants
Pollution
Rivers
river
pollutant
Catchments
water quality
Water
water
effluents
catchment
Ammonia
Discharge (fluid mechanics)
Water quality

Keywords

  • Pollutant concentration
  • Pollution
  • Self-purification
  • Umguza River
  • Water quality

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

Critical pollution levels in Umguza River, Zimbabwe. / Chinyama, A.; Ncube, R.; Ela, Wendell P.

In: Physics and Chemistry of the Earth, 17.03.2015.

Research output: Contribution to journalArticle

@article{55b639ce93a34b19aa7f32e74351b490,
title = "Critical pollution levels in Umguza River, Zimbabwe",
abstract = "In most countries worldwide regulatory bodies set effluent discharge limits into rivers and other natural water bodies. These limits specify the maximum permissible concentration of defined pollutants that may be discharged into the water body. This limit is conceptually based on the self-purification (assimilative) capacity of the receiving water. However, this self-purification constant is itself a function of the water's pollutant loading. Umguza River situated south west of Zimbabwe, is fed by tributaries that drain an urban catchment and as such is prone to pollution due to human activities in the catchment. This study investigated the levels of pollution in Umguza River that would affect its self-purification capacity. This was achieved by characterising the spatial distribution of a selected range of water quality parameters as well as determining the self-purification capacity of a stretch of the river. Critical pollutant concentrations were determined for some of the parameters that showed high values along the stretch. The selected parameters of interest were dissolved oxygen, suspended solids, phosphates, nitrates, COD, turbidity, ammonia, pH, alkalinity and temperature. The study was carried out from January 2014 to April 2014. The self-purification capacity was determined using a formula that compares the mass flux of a pollutant upstream and downstream of the selected stretch of the river. Statistical analysis was used to establish relationships between the pollutants and the self-purification capacity of the river. The study found that the levels of ammonia and phosphates were very high compared to the regulated limits (2 mg/l vs 0.5 mg/l; and 8 mg/l vs 0.5 mg/l respectively). It was also found that the self-purification capacity varied significantly across pollutants. It was therefore concluded that a critical pollutant concentration exists above which the river completely loses its natural ability to assimilate and decrease its pollutant load over time. It was also concluded that the self-purification capacity depends on the pollutant of concern in the river. It is recommended that the self-purification capacity of a river be determined before regulatory bodies set effluent discharge limits. It is also recommended that the water quality of water bodies draining pollution prone catchments be monitored regularly, besides just monitoring the discharge points.",
keywords = "Pollutant concentration, Pollution, Self-purification, Umguza River, Water quality",
author = "A. Chinyama and R. Ncube and Ela, {Wendell P}",
year = "2015",
month = "3",
day = "17",
doi = "10.1016/j.pce.2016.03.008",
language = "English (US)",
journal = "Physics and Chemistry of the Earth",
issn = "1474-7065",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Critical pollution levels in Umguza River, Zimbabwe

AU - Chinyama, A.

AU - Ncube, R.

AU - Ela, Wendell P

PY - 2015/3/17

Y1 - 2015/3/17

N2 - In most countries worldwide regulatory bodies set effluent discharge limits into rivers and other natural water bodies. These limits specify the maximum permissible concentration of defined pollutants that may be discharged into the water body. This limit is conceptually based on the self-purification (assimilative) capacity of the receiving water. However, this self-purification constant is itself a function of the water's pollutant loading. Umguza River situated south west of Zimbabwe, is fed by tributaries that drain an urban catchment and as such is prone to pollution due to human activities in the catchment. This study investigated the levels of pollution in Umguza River that would affect its self-purification capacity. This was achieved by characterising the spatial distribution of a selected range of water quality parameters as well as determining the self-purification capacity of a stretch of the river. Critical pollutant concentrations were determined for some of the parameters that showed high values along the stretch. The selected parameters of interest were dissolved oxygen, suspended solids, phosphates, nitrates, COD, turbidity, ammonia, pH, alkalinity and temperature. The study was carried out from January 2014 to April 2014. The self-purification capacity was determined using a formula that compares the mass flux of a pollutant upstream and downstream of the selected stretch of the river. Statistical analysis was used to establish relationships between the pollutants and the self-purification capacity of the river. The study found that the levels of ammonia and phosphates were very high compared to the regulated limits (2 mg/l vs 0.5 mg/l; and 8 mg/l vs 0.5 mg/l respectively). It was also found that the self-purification capacity varied significantly across pollutants. It was therefore concluded that a critical pollutant concentration exists above which the river completely loses its natural ability to assimilate and decrease its pollutant load over time. It was also concluded that the self-purification capacity depends on the pollutant of concern in the river. It is recommended that the self-purification capacity of a river be determined before regulatory bodies set effluent discharge limits. It is also recommended that the water quality of water bodies draining pollution prone catchments be monitored regularly, besides just monitoring the discharge points.

AB - In most countries worldwide regulatory bodies set effluent discharge limits into rivers and other natural water bodies. These limits specify the maximum permissible concentration of defined pollutants that may be discharged into the water body. This limit is conceptually based on the self-purification (assimilative) capacity of the receiving water. However, this self-purification constant is itself a function of the water's pollutant loading. Umguza River situated south west of Zimbabwe, is fed by tributaries that drain an urban catchment and as such is prone to pollution due to human activities in the catchment. This study investigated the levels of pollution in Umguza River that would affect its self-purification capacity. This was achieved by characterising the spatial distribution of a selected range of water quality parameters as well as determining the self-purification capacity of a stretch of the river. Critical pollutant concentrations were determined for some of the parameters that showed high values along the stretch. The selected parameters of interest were dissolved oxygen, suspended solids, phosphates, nitrates, COD, turbidity, ammonia, pH, alkalinity and temperature. The study was carried out from January 2014 to April 2014. The self-purification capacity was determined using a formula that compares the mass flux of a pollutant upstream and downstream of the selected stretch of the river. Statistical analysis was used to establish relationships between the pollutants and the self-purification capacity of the river. The study found that the levels of ammonia and phosphates were very high compared to the regulated limits (2 mg/l vs 0.5 mg/l; and 8 mg/l vs 0.5 mg/l respectively). It was also found that the self-purification capacity varied significantly across pollutants. It was therefore concluded that a critical pollutant concentration exists above which the river completely loses its natural ability to assimilate and decrease its pollutant load over time. It was also concluded that the self-purification capacity depends on the pollutant of concern in the river. It is recommended that the self-purification capacity of a river be determined before regulatory bodies set effluent discharge limits. It is also recommended that the water quality of water bodies draining pollution prone catchments be monitored regularly, besides just monitoring the discharge points.

KW - Pollutant concentration

KW - Pollution

KW - Self-purification

KW - Umguza River

KW - Water quality

UR - http://www.scopus.com/inward/record.url?scp=84979464625&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84979464625&partnerID=8YFLogxK

U2 - 10.1016/j.pce.2016.03.008

DO - 10.1016/j.pce.2016.03.008

M3 - Article

AN - SCOPUS:84979464625

JO - Physics and Chemistry of the Earth

JF - Physics and Chemistry of the Earth

SN - 1474-7065

ER -