Cysteine accessibility in the hydrophilic cleft of human organic cation transporter 2

Ryan M. Pelis, Xiaohong Zhang, Yodying Dangprapai, Stephen Wright

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Organic cation transporters (OCTs) are involved in the renal elimination of many cationic drugs and toxins. A hypothetical three-dimensional structure of OCT2 based on a homology model that used the Escherichia coli glycerol 3-phosphate transporter as a template has been described (Zhang, X., Shirahatti, N. V., Mahadevan, D., and Wright, S. H. (2005) J. Biol. Chem. 280, 34813-34822). To further define OCT structure, the accessibility to hydrophilic thiol-reactive reagents of the 13 cysteine residues contained in the human ortholog of OCT2 was examined. Maleimide-PEO2-biotin precipitated (surface biotinylation followed by Western blotting) and reduced tetraethylammonium transport by OCT2 expressed in Chinese hamster ovary cells, effects that were largely reversed by co-exposure to substrates and transport inhibitors, suggesting interaction with cysteines that are near to or part of a substrate-binding surface. Cysteines at amino acid position 437, 451, 470, and 474 were identified from the model as being located in transmembrane helices that participate in forming the hydrophilic cleft, the proposed region of substrate-protein interaction. To determine which residues are exposed to the solvent, a mutant with all four of these cysteines converted to alanine, along with four variants of this mutant each with an individual cysteine restored, were created. Maleimide-PEO2-biotin was only effective at precipitating and reducing transport by wild-type OCT2 and the mutant with cysteine 474 restored. Additionally, the smaller thiol-reactive reagent, methanethiosulfonate ethylsulfonate, reduced transport by wild-type OCT2 and the mutant with cysteine 474 restored. These data demonstrate that cysteine 474 of OCT2 is exposed to the aqueous milieu of the cleft and contributes to forming a pathway for organic cation transport.

Original languageEnglish (US)
Pages (from-to)35272-35280
Number of pages9
JournalJournal of Biological Chemistry
Volume281
Issue number46
DOIs
StatePublished - Nov 17 2006

Fingerprint

Cysteine
Cations
Sulfhydryl Reagents
Biotin
Sulfhydryl Compounds
Substrates
Phosphate Transport Proteins
Biotinylation
Tetraethylammonium
Cricetulus
Alanine
Escherichia coli
Ovary
Western Blotting
Cells
Amino Acids
Pharmaceutical Preparations
Proteins

ASJC Scopus subject areas

  • Biochemistry

Cite this

Cysteine accessibility in the hydrophilic cleft of human organic cation transporter 2. / Pelis, Ryan M.; Zhang, Xiaohong; Dangprapai, Yodying; Wright, Stephen.

In: Journal of Biological Chemistry, Vol. 281, No. 46, 17.11.2006, p. 35272-35280.

Research output: Contribution to journalArticle

Pelis, Ryan M. ; Zhang, Xiaohong ; Dangprapai, Yodying ; Wright, Stephen. / Cysteine accessibility in the hydrophilic cleft of human organic cation transporter 2. In: Journal of Biological Chemistry. 2006 ; Vol. 281, No. 46. pp. 35272-35280.
@article{d37d0b57a4504b3898aa5283d84d1a3e,
title = "Cysteine accessibility in the hydrophilic cleft of human organic cation transporter 2",
abstract = "Organic cation transporters (OCTs) are involved in the renal elimination of many cationic drugs and toxins. A hypothetical three-dimensional structure of OCT2 based on a homology model that used the Escherichia coli glycerol 3-phosphate transporter as a template has been described (Zhang, X., Shirahatti, N. V., Mahadevan, D., and Wright, S. H. (2005) J. Biol. Chem. 280, 34813-34822). To further define OCT structure, the accessibility to hydrophilic thiol-reactive reagents of the 13 cysteine residues contained in the human ortholog of OCT2 was examined. Maleimide-PEO2-biotin precipitated (surface biotinylation followed by Western blotting) and reduced tetraethylammonium transport by OCT2 expressed in Chinese hamster ovary cells, effects that were largely reversed by co-exposure to substrates and transport inhibitors, suggesting interaction with cysteines that are near to or part of a substrate-binding surface. Cysteines at amino acid position 437, 451, 470, and 474 were identified from the model as being located in transmembrane helices that participate in forming the hydrophilic cleft, the proposed region of substrate-protein interaction. To determine which residues are exposed to the solvent, a mutant with all four of these cysteines converted to alanine, along with four variants of this mutant each with an individual cysteine restored, were created. Maleimide-PEO2-biotin was only effective at precipitating and reducing transport by wild-type OCT2 and the mutant with cysteine 474 restored. Additionally, the smaller thiol-reactive reagent, methanethiosulfonate ethylsulfonate, reduced transport by wild-type OCT2 and the mutant with cysteine 474 restored. These data demonstrate that cysteine 474 of OCT2 is exposed to the aqueous milieu of the cleft and contributes to forming a pathway for organic cation transport.",
author = "Pelis, {Ryan M.} and Xiaohong Zhang and Yodying Dangprapai and Stephen Wright",
year = "2006",
month = "11",
day = "17",
doi = "10.1074/jbc.M606561200",
language = "English (US)",
volume = "281",
pages = "35272--35280",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "46",

}

TY - JOUR

T1 - Cysteine accessibility in the hydrophilic cleft of human organic cation transporter 2

AU - Pelis, Ryan M.

AU - Zhang, Xiaohong

AU - Dangprapai, Yodying

AU - Wright, Stephen

PY - 2006/11/17

Y1 - 2006/11/17

N2 - Organic cation transporters (OCTs) are involved in the renal elimination of many cationic drugs and toxins. A hypothetical three-dimensional structure of OCT2 based on a homology model that used the Escherichia coli glycerol 3-phosphate transporter as a template has been described (Zhang, X., Shirahatti, N. V., Mahadevan, D., and Wright, S. H. (2005) J. Biol. Chem. 280, 34813-34822). To further define OCT structure, the accessibility to hydrophilic thiol-reactive reagents of the 13 cysteine residues contained in the human ortholog of OCT2 was examined. Maleimide-PEO2-biotin precipitated (surface biotinylation followed by Western blotting) and reduced tetraethylammonium transport by OCT2 expressed in Chinese hamster ovary cells, effects that were largely reversed by co-exposure to substrates and transport inhibitors, suggesting interaction with cysteines that are near to or part of a substrate-binding surface. Cysteines at amino acid position 437, 451, 470, and 474 were identified from the model as being located in transmembrane helices that participate in forming the hydrophilic cleft, the proposed region of substrate-protein interaction. To determine which residues are exposed to the solvent, a mutant with all four of these cysteines converted to alanine, along with four variants of this mutant each with an individual cysteine restored, were created. Maleimide-PEO2-biotin was only effective at precipitating and reducing transport by wild-type OCT2 and the mutant with cysteine 474 restored. Additionally, the smaller thiol-reactive reagent, methanethiosulfonate ethylsulfonate, reduced transport by wild-type OCT2 and the mutant with cysteine 474 restored. These data demonstrate that cysteine 474 of OCT2 is exposed to the aqueous milieu of the cleft and contributes to forming a pathway for organic cation transport.

AB - Organic cation transporters (OCTs) are involved in the renal elimination of many cationic drugs and toxins. A hypothetical three-dimensional structure of OCT2 based on a homology model that used the Escherichia coli glycerol 3-phosphate transporter as a template has been described (Zhang, X., Shirahatti, N. V., Mahadevan, D., and Wright, S. H. (2005) J. Biol. Chem. 280, 34813-34822). To further define OCT structure, the accessibility to hydrophilic thiol-reactive reagents of the 13 cysteine residues contained in the human ortholog of OCT2 was examined. Maleimide-PEO2-biotin precipitated (surface biotinylation followed by Western blotting) and reduced tetraethylammonium transport by OCT2 expressed in Chinese hamster ovary cells, effects that were largely reversed by co-exposure to substrates and transport inhibitors, suggesting interaction with cysteines that are near to or part of a substrate-binding surface. Cysteines at amino acid position 437, 451, 470, and 474 were identified from the model as being located in transmembrane helices that participate in forming the hydrophilic cleft, the proposed region of substrate-protein interaction. To determine which residues are exposed to the solvent, a mutant with all four of these cysteines converted to alanine, along with four variants of this mutant each with an individual cysteine restored, were created. Maleimide-PEO2-biotin was only effective at precipitating and reducing transport by wild-type OCT2 and the mutant with cysteine 474 restored. Additionally, the smaller thiol-reactive reagent, methanethiosulfonate ethylsulfonate, reduced transport by wild-type OCT2 and the mutant with cysteine 474 restored. These data demonstrate that cysteine 474 of OCT2 is exposed to the aqueous milieu of the cleft and contributes to forming a pathway for organic cation transport.

UR - http://www.scopus.com/inward/record.url?scp=33845922107&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33845922107&partnerID=8YFLogxK

U2 - 10.1074/jbc.M606561200

DO - 10.1074/jbc.M606561200

M3 - Article

VL - 281

SP - 35272

EP - 35280

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 46

ER -