Data-driven subspace predictive control: Lab demonstration and future outlook

Sebastiaan Y. Haffert, Jared R. Males, Laird Close, Joseph Long, Lauren Schatz, Kyle Van Gorkom, Alexander Hedglen, Jennifer Lumbres, Alexander Rodack, Olivier Guyon, Justin Knight, He Sun, Kevin Fogarty

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

MagAO-X system is a new adaptive optics for the Magellan Clay 6.5m telescope. MagAO-X has been designed to provide extreme adaptive optics (ExAO) performance in the visible. VIS-X is an integral-field spectrograph specifically designed for MagAO-X, and it will cover the optical spectral range (450-900 nm) at high-spectral (R=15.000) and high-spatial resolution (7 mas spaxels) over a 0.525 arsecond field of view. VIS-X will be used to observe accreting protoplanets such as PDS70 b c. End-To-end simulations show that the combination of MagAO-X with VIS-X is 100 times more sensitive to accreting protoplanets than any other instrument to date. VIS-X can resolve the planetary accretion lines, and therefore constrain the accretion process. The instrument is scheduled to have its first light in Fall 2021. We will show the lab measurements to characterize the spectrograph and its post-processing performance.

Original languageEnglish (US)
Title of host publicationTechniques and Instrumentation for Detection of Exoplanets X
EditorsStuart B. Shaklan, Garreth J. Ruane
PublisherSPIE
ISBN (Electronic)9781510644847
DOIs
StatePublished - 2021
EventTechniques and Instrumentation for Detection of Exoplanets X 2021 - San Diego, United States
Duration: Aug 1 2021Aug 5 2021

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11823
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceTechniques and Instrumentation for Detection of Exoplanets X 2021
Country/TerritoryUnited States
CitySan Diego
Period8/1/218/5/21

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Data-driven subspace predictive control: Lab demonstration and future outlook'. Together they form a unique fingerprint.

Cite this