Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40

Alex Simon, Andrea R. McWhorter

Research output: Contribution to journalArticle

109 Citations (Scopus)

Abstract

Vascular endothelial cells are coupled by gap junctions that permit cell-to-cell transfer of small molecules, including signals that may be important for vasomotor responses. Connexin37 (Cx37) and connexin40 (Cx40) are the predominant gap-junction proteins present in mouse endothelium. We examined the effect of eliminating Cx37, Cx40, or both, on interendothelial communication in mouse aorta. Intercellular transfer of biocytin and [2-(4-nitro-2,1,3-benzoxadiazol-7-yl)aminoethyl]trimethylammonium (NBD-TMA) was used to assess gap-junction-mediated coupling. Ablation of Cx40 generally had a greater effect on dye-transfer than ablation of Cx37. The effect of Cx40 ablation on dye-transfer was age dependent. There was a 27-fold reduction in biocytin transfer in embryonic Cx40-/- aortic endothelium, a much larger change than in aortas of 6-7-week-old Cx40-/- animals, which showed a 3.5-fold reduction. By contrast, there was no reduction in biocytin transfer in embryonic Cx37-/- endothelium. Embryonic aortas lacking both Cx37 and Cx40 showed a complete loss of endothelial dye-transfer. Surprisingly, elimination of Cx40 resulted in up to a 17-fold drop in endothelial Cx37 on western blots, whereas deletion of Cx37 reduced endothelial Cx40 up to 4.2-fold. By contrast, in the medial layer, both Cx37 and Cx43 increased fourfold in Cx40-/- aortas. Declines in non-ablated endothelial connexins were not mediated by changes in connexin mRNA levels, suggesting a post-transcriptional effect. Our results indicate that Cx37 and Cx40 are the only functional connexins expressed in mouse aortic endothelium and are collectively crucial for endothelial communication. Furthermore, Cx37 and Cx40 are codependent on each other for optimal expression in vascular endothelium.

Original languageEnglish (US)
Pages (from-to)2223-2236
Number of pages14
JournalJournal of Cell Science
Volume116
Issue number11
DOIs
StatePublished - Jun 1 2003

Fingerprint

Connexins
Endothelium
Aorta
Coloring Agents
Down-Regulation
Gap Junctions
Communication
Connexin 43
Vascular Endothelium
Endothelial Cells
Western Blotting
Messenger RNA
biocytin

Keywords

  • Aorta
  • Connexin37
  • Connexin40
  • Endothelium
  • Gap junction
  • Intercellular communication

ASJC Scopus subject areas

  • Cell Biology

Cite this

Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40. / Simon, Alex; McWhorter, Andrea R.

In: Journal of Cell Science, Vol. 116, No. 11, 01.06.2003, p. 2223-2236.

Research output: Contribution to journalArticle

@article{4b9b80a830df478cb62dbe5ccbf42407,
title = "Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40",
abstract = "Vascular endothelial cells are coupled by gap junctions that permit cell-to-cell transfer of small molecules, including signals that may be important for vasomotor responses. Connexin37 (Cx37) and connexin40 (Cx40) are the predominant gap-junction proteins present in mouse endothelium. We examined the effect of eliminating Cx37, Cx40, or both, on interendothelial communication in mouse aorta. Intercellular transfer of biocytin and [2-(4-nitro-2,1,3-benzoxadiazol-7-yl)aminoethyl]trimethylammonium (NBD-TMA) was used to assess gap-junction-mediated coupling. Ablation of Cx40 generally had a greater effect on dye-transfer than ablation of Cx37. The effect of Cx40 ablation on dye-transfer was age dependent. There was a 27-fold reduction in biocytin transfer in embryonic Cx40-/- aortic endothelium, a much larger change than in aortas of 6-7-week-old Cx40-/- animals, which showed a 3.5-fold reduction. By contrast, there was no reduction in biocytin transfer in embryonic Cx37-/- endothelium. Embryonic aortas lacking both Cx37 and Cx40 showed a complete loss of endothelial dye-transfer. Surprisingly, elimination of Cx40 resulted in up to a 17-fold drop in endothelial Cx37 on western blots, whereas deletion of Cx37 reduced endothelial Cx40 up to 4.2-fold. By contrast, in the medial layer, both Cx37 and Cx43 increased fourfold in Cx40-/- aortas. Declines in non-ablated endothelial connexins were not mediated by changes in connexin mRNA levels, suggesting a post-transcriptional effect. Our results indicate that Cx37 and Cx40 are the only functional connexins expressed in mouse aortic endothelium and are collectively crucial for endothelial communication. Furthermore, Cx37 and Cx40 are codependent on each other for optimal expression in vascular endothelium.",
keywords = "Aorta, Connexin37, Connexin40, Endothelium, Gap junction, Intercellular communication",
author = "Alex Simon and McWhorter, {Andrea R.}",
year = "2003",
month = "6",
day = "1",
doi = "10.1242/jcs.00429",
language = "English (US)",
volume = "116",
pages = "2223--2236",
journal = "Journal of Cell Science",
issn = "0021-9533",
publisher = "Company of Biologists Ltd",
number = "11",

}

TY - JOUR

T1 - Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin37 or connexin40

AU - Simon, Alex

AU - McWhorter, Andrea R.

PY - 2003/6/1

Y1 - 2003/6/1

N2 - Vascular endothelial cells are coupled by gap junctions that permit cell-to-cell transfer of small molecules, including signals that may be important for vasomotor responses. Connexin37 (Cx37) and connexin40 (Cx40) are the predominant gap-junction proteins present in mouse endothelium. We examined the effect of eliminating Cx37, Cx40, or both, on interendothelial communication in mouse aorta. Intercellular transfer of biocytin and [2-(4-nitro-2,1,3-benzoxadiazol-7-yl)aminoethyl]trimethylammonium (NBD-TMA) was used to assess gap-junction-mediated coupling. Ablation of Cx40 generally had a greater effect on dye-transfer than ablation of Cx37. The effect of Cx40 ablation on dye-transfer was age dependent. There was a 27-fold reduction in biocytin transfer in embryonic Cx40-/- aortic endothelium, a much larger change than in aortas of 6-7-week-old Cx40-/- animals, which showed a 3.5-fold reduction. By contrast, there was no reduction in biocytin transfer in embryonic Cx37-/- endothelium. Embryonic aortas lacking both Cx37 and Cx40 showed a complete loss of endothelial dye-transfer. Surprisingly, elimination of Cx40 resulted in up to a 17-fold drop in endothelial Cx37 on western blots, whereas deletion of Cx37 reduced endothelial Cx40 up to 4.2-fold. By contrast, in the medial layer, both Cx37 and Cx43 increased fourfold in Cx40-/- aortas. Declines in non-ablated endothelial connexins were not mediated by changes in connexin mRNA levels, suggesting a post-transcriptional effect. Our results indicate that Cx37 and Cx40 are the only functional connexins expressed in mouse aortic endothelium and are collectively crucial for endothelial communication. Furthermore, Cx37 and Cx40 are codependent on each other for optimal expression in vascular endothelium.

AB - Vascular endothelial cells are coupled by gap junctions that permit cell-to-cell transfer of small molecules, including signals that may be important for vasomotor responses. Connexin37 (Cx37) and connexin40 (Cx40) are the predominant gap-junction proteins present in mouse endothelium. We examined the effect of eliminating Cx37, Cx40, or both, on interendothelial communication in mouse aorta. Intercellular transfer of biocytin and [2-(4-nitro-2,1,3-benzoxadiazol-7-yl)aminoethyl]trimethylammonium (NBD-TMA) was used to assess gap-junction-mediated coupling. Ablation of Cx40 generally had a greater effect on dye-transfer than ablation of Cx37. The effect of Cx40 ablation on dye-transfer was age dependent. There was a 27-fold reduction in biocytin transfer in embryonic Cx40-/- aortic endothelium, a much larger change than in aortas of 6-7-week-old Cx40-/- animals, which showed a 3.5-fold reduction. By contrast, there was no reduction in biocytin transfer in embryonic Cx37-/- endothelium. Embryonic aortas lacking both Cx37 and Cx40 showed a complete loss of endothelial dye-transfer. Surprisingly, elimination of Cx40 resulted in up to a 17-fold drop in endothelial Cx37 on western blots, whereas deletion of Cx37 reduced endothelial Cx40 up to 4.2-fold. By contrast, in the medial layer, both Cx37 and Cx43 increased fourfold in Cx40-/- aortas. Declines in non-ablated endothelial connexins were not mediated by changes in connexin mRNA levels, suggesting a post-transcriptional effect. Our results indicate that Cx37 and Cx40 are the only functional connexins expressed in mouse aortic endothelium and are collectively crucial for endothelial communication. Furthermore, Cx37 and Cx40 are codependent on each other for optimal expression in vascular endothelium.

KW - Aorta

KW - Connexin37

KW - Connexin40

KW - Endothelium

KW - Gap junction

KW - Intercellular communication

UR - http://www.scopus.com/inward/record.url?scp=0038010467&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038010467&partnerID=8YFLogxK

U2 - 10.1242/jcs.00429

DO - 10.1242/jcs.00429

M3 - Article

VL - 116

SP - 2223

EP - 2236

JO - Journal of Cell Science

JF - Journal of Cell Science

SN - 0021-9533

IS - 11

ER -