Decreased nutrient-stimulated insulin secretion in chronically hypoglycemic late-gestation fetal sheep is due to an intrinsic islet defect

Paul J. Rozance, Sean W Limesand, William W. Hay

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 ± 0.05 ng/ml leucine; 0.99 ± 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 ± 0.18 ng/ml) and acute (0.27 ± 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 ± 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume291
Issue number2
DOIs
StatePublished - 2006

Fingerprint

Hypoglycemic Agents
Nutrients
Sheep
Insulin
Food
Pregnancy
Defects
Hypoglycemia
Leucine
Lysine
Fetus
Glucose
Low Birth Weight Infant
Growth
Islets of Langerhans
Arginine
Plasmas
DNA

Keywords

  • Glucose
  • Hypoglycemia

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Biochemistry

Cite this

@article{f20ec57b26084c489d385eda6f58787c,
title = "Decreased nutrient-stimulated insulin secretion in chronically hypoglycemic late-gestation fetal sheep is due to an intrinsic islet defect",
abstract = "We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 ± 0.05 ng/ml leucine; 0.99 ± 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 ± 0.18 ng/ml) and acute (0.27 ± 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 ± 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.",
keywords = "Glucose, Hypoglycemia",
author = "Rozance, {Paul J.} and Limesand, {Sean W} and Hay, {William W.}",
year = "2006",
doi = "10.1152/ajpendo.00643.2005",
language = "English (US)",
volume = "291",
journal = "American Journal of Physiology",
issn = "0363-6143",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Decreased nutrient-stimulated insulin secretion in chronically hypoglycemic late-gestation fetal sheep is due to an intrinsic islet defect

AU - Rozance, Paul J.

AU - Limesand, Sean W

AU - Hay, William W.

PY - 2006

Y1 - 2006

N2 - We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 ± 0.05 ng/ml leucine; 0.99 ± 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 ± 0.18 ng/ml) and acute (0.27 ± 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 ± 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.

AB - We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 ± 0.05 ng/ml leucine; 0.99 ± 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 ± 0.18 ng/ml) and acute (0.27 ± 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 ± 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.

KW - Glucose

KW - Hypoglycemia

UR - http://www.scopus.com/inward/record.url?scp=33745814724&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745814724&partnerID=8YFLogxK

U2 - 10.1152/ajpendo.00643.2005

DO - 10.1152/ajpendo.00643.2005

M3 - Article

VL - 291

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6143

IS - 2

ER -