Detecting social bots by jointly modeling deep behavior and content information

Chiyu Cai, Linjing Li, Daniel Zeng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

Bots are regarded as the most common kind of malwares in the era of Web 2.0. In recent years, Internet has been populated by hundreds of millions of bots, especially on social media. Thus, the demand on effective and efficient bot detection algorithms is more urgent than ever. Existing works have partly satisfied this requirement by way of laborious feature engineering. In this paper, we propose a deep bot detection model aiming to learn an effective representation of social user and then detect social bots by jointly modeling social behavior and content information. The proposed model learns the representation of social behavior by encoding both endogenous and exogenous factors which affect user behavior. As to the representation of content, we regard the user content as temporal text data instead of just plain text as be treated in other existing works to extract semantic information and latent temporal patterns. To the best of our knowledge, this is the first trial that applies deep learning in modeling social users and accomplishing social bot detection. Experiments on real world dataset collected from Twitter demonstrate the effectiveness of the proposed model.

Original languageEnglish (US)
Title of host publicationCIKM 2017 - Proceedings of the 2017 ACM Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages1995-1998
Number of pages4
ISBN (Electronic)9781450349185
DOIs
StatePublished - Nov 6 2017
Event26th ACM International Conference on Information and Knowledge Management, CIKM 2017 - Singapore, Singapore
Duration: Nov 6 2017Nov 10 2017

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
VolumePart F131841

Other

Other26th ACM International Conference on Information and Knowledge Management, CIKM 2017
Country/TerritorySingapore
CitySingapore
Period11/6/1711/10/17

Keywords

  • Behavior factors
  • Bot detection
  • Deep learning
  • Temporal content

ASJC Scopus subject areas

  • Decision Sciences(all)
  • Business, Management and Accounting(all)

Fingerprint

Dive into the research topics of 'Detecting social bots by jointly modeling deep behavior and content information'. Together they form a unique fingerprint.

Cite this