Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption

Marc E Tischler, Pat Hecht, John R. Williamson

Research output: Contribution to journalArticle

87 Citations (Scopus)

Abstract

A new technique is described for determining the distribution of metabolites between the cytosol and mitochondria. Rapid lysis of the cell plasma membrane is obtained by forcing isolated liver cells under high pressure through a small diameter needle. The cells, after disruption by the shearing forces generated during the turbulent flow through the needle, are exposed to mitochondrial anion transport inhibitors to prevent efflux of mitochondrial metabolites. Maximal release of cytosolic metabolites was obtained when release of lactate dehydrogenase was greater than 70%, which corresponded with minimal release of mitochondrial enzymes (5-9%). A measured Reynolds number between 7600 and 8000 was indicative of optimal disruption. Mitochondria in the disrupted cells were still functional, as shown by the ability of ADP to stimulate respiration when glutamate plus malate were provided as substrates. Measurement of the subcellular volumes yielded values of 2.0 and 0.2 ml/g dry wt, respectively, for the cytosol and mitochondria. Calculation of the mitochondrial ΔpH (pHin-pHout) in the isolated liver cell based on 22 individual measurements of mitochondria/cytosol gradients for citrate, isocitrate, α-ketoglutarate, malate, glutamate, and pyruvate yielded a value of 0.41 ±0.03. The excellent relationship of these gradients to a common ΔpH lends credence to the technique. Cytosolic and mitochondrial ATP ADP ratios were similar in liver cells isolated from starved and fed rats. Fed rat liver cells, however, had a higher cytosolic adenine nucleotide content (16.8 μmol/g dry wt) than those from starved rats (14.5 μmol/ g dry wt) whereas the mitochondrial content was the same (16 nmol/mg of mitochondrial protein). Data obtained by the disruption technique are compared with other previously published data obtained using either digitonin treatment of isolated hepatocytes or nonaqueous solvent extraction of lyophilized freeze-clamped perfused livers.

Original languageEnglish (US)
Pages (from-to)278-292
Number of pages15
JournalArchives of Biochemistry and Biophysics
Volume181
Issue number1
DOIs
StatePublished - 1977
Externally publishedYes

Fingerprint

Metabolites
Mitochondria
Liver
Rats
Cytosol
Cell membranes
Needles
Adenosine Diphosphate
Glutamic Acid
Digitonin
Cell Membrane
Adenine Nucleotides
Mitochondrial Proteins
Solvent extraction
Pyruvic Acid
L-Lactate Dehydrogenase
Shearing
Citric Acid
Turbulent flow
Anions

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Cite this

Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption. / Tischler, Marc E; Hecht, Pat; Williamson, John R.

In: Archives of Biochemistry and Biophysics, Vol. 181, No. 1, 1977, p. 278-292.

Research output: Contribution to journalArticle

@article{341bbd78a2214749b395dc2c7c30fe7d,
title = "Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption",
abstract = "A new technique is described for determining the distribution of metabolites between the cytosol and mitochondria. Rapid lysis of the cell plasma membrane is obtained by forcing isolated liver cells under high pressure through a small diameter needle. The cells, after disruption by the shearing forces generated during the turbulent flow through the needle, are exposed to mitochondrial anion transport inhibitors to prevent efflux of mitochondrial metabolites. Maximal release of cytosolic metabolites was obtained when release of lactate dehydrogenase was greater than 70{\%}, which corresponded with minimal release of mitochondrial enzymes (5-9{\%}). A measured Reynolds number between 7600 and 8000 was indicative of optimal disruption. Mitochondria in the disrupted cells were still functional, as shown by the ability of ADP to stimulate respiration when glutamate plus malate were provided as substrates. Measurement of the subcellular volumes yielded values of 2.0 and 0.2 ml/g dry wt, respectively, for the cytosol and mitochondria. Calculation of the mitochondrial ΔpH (pHin-pHout) in the isolated liver cell based on 22 individual measurements of mitochondria/cytosol gradients for citrate, isocitrate, α-ketoglutarate, malate, glutamate, and pyruvate yielded a value of 0.41 ±0.03. The excellent relationship of these gradients to a common ΔpH lends credence to the technique. Cytosolic and mitochondrial ATP ADP ratios were similar in liver cells isolated from starved and fed rats. Fed rat liver cells, however, had a higher cytosolic adenine nucleotide content (16.8 μmol/g dry wt) than those from starved rats (14.5 μmol/ g dry wt) whereas the mitochondrial content was the same (16 nmol/mg of mitochondrial protein). Data obtained by the disruption technique are compared with other previously published data obtained using either digitonin treatment of isolated hepatocytes or nonaqueous solvent extraction of lyophilized freeze-clamped perfused livers.",
author = "Tischler, {Marc E} and Pat Hecht and Williamson, {John R.}",
year = "1977",
doi = "10.1016/0003-9861(77)90506-9",
language = "English (US)",
volume = "181",
pages = "278--292",
journal = "Archives of Biochemistry and Biophysics",
issn = "0003-9861",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption

AU - Tischler, Marc E

AU - Hecht, Pat

AU - Williamson, John R.

PY - 1977

Y1 - 1977

N2 - A new technique is described for determining the distribution of metabolites between the cytosol and mitochondria. Rapid lysis of the cell plasma membrane is obtained by forcing isolated liver cells under high pressure through a small diameter needle. The cells, after disruption by the shearing forces generated during the turbulent flow through the needle, are exposed to mitochondrial anion transport inhibitors to prevent efflux of mitochondrial metabolites. Maximal release of cytosolic metabolites was obtained when release of lactate dehydrogenase was greater than 70%, which corresponded with minimal release of mitochondrial enzymes (5-9%). A measured Reynolds number between 7600 and 8000 was indicative of optimal disruption. Mitochondria in the disrupted cells were still functional, as shown by the ability of ADP to stimulate respiration when glutamate plus malate were provided as substrates. Measurement of the subcellular volumes yielded values of 2.0 and 0.2 ml/g dry wt, respectively, for the cytosol and mitochondria. Calculation of the mitochondrial ΔpH (pHin-pHout) in the isolated liver cell based on 22 individual measurements of mitochondria/cytosol gradients for citrate, isocitrate, α-ketoglutarate, malate, glutamate, and pyruvate yielded a value of 0.41 ±0.03. The excellent relationship of these gradients to a common ΔpH lends credence to the technique. Cytosolic and mitochondrial ATP ADP ratios were similar in liver cells isolated from starved and fed rats. Fed rat liver cells, however, had a higher cytosolic adenine nucleotide content (16.8 μmol/g dry wt) than those from starved rats (14.5 μmol/ g dry wt) whereas the mitochondrial content was the same (16 nmol/mg of mitochondrial protein). Data obtained by the disruption technique are compared with other previously published data obtained using either digitonin treatment of isolated hepatocytes or nonaqueous solvent extraction of lyophilized freeze-clamped perfused livers.

AB - A new technique is described for determining the distribution of metabolites between the cytosol and mitochondria. Rapid lysis of the cell plasma membrane is obtained by forcing isolated liver cells under high pressure through a small diameter needle. The cells, after disruption by the shearing forces generated during the turbulent flow through the needle, are exposed to mitochondrial anion transport inhibitors to prevent efflux of mitochondrial metabolites. Maximal release of cytosolic metabolites was obtained when release of lactate dehydrogenase was greater than 70%, which corresponded with minimal release of mitochondrial enzymes (5-9%). A measured Reynolds number between 7600 and 8000 was indicative of optimal disruption. Mitochondria in the disrupted cells were still functional, as shown by the ability of ADP to stimulate respiration when glutamate plus malate were provided as substrates. Measurement of the subcellular volumes yielded values of 2.0 and 0.2 ml/g dry wt, respectively, for the cytosol and mitochondria. Calculation of the mitochondrial ΔpH (pHin-pHout) in the isolated liver cell based on 22 individual measurements of mitochondria/cytosol gradients for citrate, isocitrate, α-ketoglutarate, malate, glutamate, and pyruvate yielded a value of 0.41 ±0.03. The excellent relationship of these gradients to a common ΔpH lends credence to the technique. Cytosolic and mitochondrial ATP ADP ratios were similar in liver cells isolated from starved and fed rats. Fed rat liver cells, however, had a higher cytosolic adenine nucleotide content (16.8 μmol/g dry wt) than those from starved rats (14.5 μmol/ g dry wt) whereas the mitochondrial content was the same (16 nmol/mg of mitochondrial protein). Data obtained by the disruption technique are compared with other previously published data obtained using either digitonin treatment of isolated hepatocytes or nonaqueous solvent extraction of lyophilized freeze-clamped perfused livers.

UR - http://www.scopus.com/inward/record.url?scp=0017399084&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0017399084&partnerID=8YFLogxK

U2 - 10.1016/0003-9861(77)90506-9

DO - 10.1016/0003-9861(77)90506-9

M3 - Article

C2 - 18107

AN - SCOPUS:0017399084

VL - 181

SP - 278

EP - 292

JO - Archives of Biochemistry and Biophysics

JF - Archives of Biochemistry and Biophysics

SN - 0003-9861

IS - 1

ER -