Development of haptic communication device for disabled persons

Zoltán Szabó, Eniko T Enikov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With the emergence of augmented and virtual-reality based information delivery technologies the gap between availability of communication devices for visually impaired people and sighted people is emerging. The current study describes a communication tool which provides a reading platform for visually impaired people by means of a haptic display. In this paper the development and human subject study based evaluation of an electromagnetic microactuator-array based virtual tactile display is presented. The actuator array is comprised of a 4 by 5 array of micro voice-coil actuators (tactors) providing vibrotactile stimulation on the user's fingertip. The size and performance of the actuators is evaluated against the thresholds of human tactile perception. It is demonstrated that a 2.65 mm (diameter) x 4 mm (height) generic tactor is suitable for practical applications in dynamic tactile displays. The maximum force of the actuator was 30 mN generated at current levels of 200 mA. At a stroke of 4.5 mm the force is reduced to 10 mN. The peak force was generated at a displacement of 1.5 mm. A total of 10 alpha-numeric symbols were displayed to the users via dynamically changing the location of the vibrating point in a predefined sequence, thus creating a tactile perception of continuous curve. Users were asked to sketch out the perceived symbols. Each subject carried out three experiments. The first experiment exposed all subjects to ten different characters. Data obtained from human subject tests suggest that users perceive most shapes accurately, however the existence of jump discontinuities in the flow of presentation of the curves lowers recognition efficiency most likely due to loss of sensation of solid reference point. Characters containing two or more discontinuous lines such as 'X' were more difficult to recognize in comparison to those described with a single line such as 'P', or 'Z'. Analysis of the average character recognition rate from 10 volunteers concluded that any presented character was identified correctly in 7 out 10 tests. The second test included characters that were reused from the first experiment. Users had improved their character recognition performance as a consequence of repeated exposure and learning. A final set of experiments concluded that recognition of groups of characters, forming words, is the least efficient and requires further perfecting. Recommendations for improvements of the recognition rate are also included.

Original languageEnglish (US)
Title of host publicationEmerging Technologies; Materials
Subtitle of host publicationGenetics to Structures; Safety Engineering and Risk Analysis
PublisherAmerican Society of Mechanical Engineers (ASME)
Volume14
ISBN (Electronic)9780791850688
DOIs
StatePublished - 2016
EventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States
Duration: Nov 11 2016Nov 17 2016

Other

OtherASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
CountryUnited States
CityPhoenix
Period11/11/1611/17/16

Fingerprint

Disabled persons
Actuators
Character recognition
Communication
Display devices
Experiments
Microactuators
Augmented reality
Virtual reality
Availability

ASJC Scopus subject areas

  • Mechanical Engineering

Cite this

Szabó, Z., & Enikov, E. T. (2016). Development of haptic communication device for disabled persons. In Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis (Vol. 14). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE201665404

Development of haptic communication device for disabled persons. / Szabó, Zoltán; Enikov, Eniko T.

Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis. Vol. 14 American Society of Mechanical Engineers (ASME), 2016.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Szabó, Z & Enikov, ET 2016, Development of haptic communication device for disabled persons. in Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis. vol. 14, American Society of Mechanical Engineers (ASME), ASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016, Phoenix, United States, 11/11/16. https://doi.org/10.1115/IMECE201665404
Szabó Z, Enikov ET. Development of haptic communication device for disabled persons. In Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis. Vol. 14. American Society of Mechanical Engineers (ASME). 2016 https://doi.org/10.1115/IMECE201665404
Szabó, Zoltán ; Enikov, Eniko T. / Development of haptic communication device for disabled persons. Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis. Vol. 14 American Society of Mechanical Engineers (ASME), 2016.
@inproceedings{4f989561a7df4f58bf7780c78d1a9124,
title = "Development of haptic communication device for disabled persons",
abstract = "With the emergence of augmented and virtual-reality based information delivery technologies the gap between availability of communication devices for visually impaired people and sighted people is emerging. The current study describes a communication tool which provides a reading platform for visually impaired people by means of a haptic display. In this paper the development and human subject study based evaluation of an electromagnetic microactuator-array based virtual tactile display is presented. The actuator array is comprised of a 4 by 5 array of micro voice-coil actuators (tactors) providing vibrotactile stimulation on the user's fingertip. The size and performance of the actuators is evaluated against the thresholds of human tactile perception. It is demonstrated that a 2.65 mm (diameter) x 4 mm (height) generic tactor is suitable for practical applications in dynamic tactile displays. The maximum force of the actuator was 30 mN generated at current levels of 200 mA. At a stroke of 4.5 mm the force is reduced to 10 mN. The peak force was generated at a displacement of 1.5 mm. A total of 10 alpha-numeric symbols were displayed to the users via dynamically changing the location of the vibrating point in a predefined sequence, thus creating a tactile perception of continuous curve. Users were asked to sketch out the perceived symbols. Each subject carried out three experiments. The first experiment exposed all subjects to ten different characters. Data obtained from human subject tests suggest that users perceive most shapes accurately, however the existence of jump discontinuities in the flow of presentation of the curves lowers recognition efficiency most likely due to loss of sensation of solid reference point. Characters containing two or more discontinuous lines such as 'X' were more difficult to recognize in comparison to those described with a single line such as 'P', or 'Z'. Analysis of the average character recognition rate from 10 volunteers concluded that any presented character was identified correctly in 7 out 10 tests. The second test included characters that were reused from the first experiment. Users had improved their character recognition performance as a consequence of repeated exposure and learning. A final set of experiments concluded that recognition of groups of characters, forming words, is the least efficient and requires further perfecting. Recommendations for improvements of the recognition rate are also included.",
author = "Zolt{\'a}n Szab{\'o} and Enikov, {Eniko T}",
year = "2016",
doi = "10.1115/IMECE201665404",
language = "English (US)",
volume = "14",
booktitle = "Emerging Technologies; Materials",
publisher = "American Society of Mechanical Engineers (ASME)",

}

TY - GEN

T1 - Development of haptic communication device for disabled persons

AU - Szabó, Zoltán

AU - Enikov, Eniko T

PY - 2016

Y1 - 2016

N2 - With the emergence of augmented and virtual-reality based information delivery technologies the gap between availability of communication devices for visually impaired people and sighted people is emerging. The current study describes a communication tool which provides a reading platform for visually impaired people by means of a haptic display. In this paper the development and human subject study based evaluation of an electromagnetic microactuator-array based virtual tactile display is presented. The actuator array is comprised of a 4 by 5 array of micro voice-coil actuators (tactors) providing vibrotactile stimulation on the user's fingertip. The size and performance of the actuators is evaluated against the thresholds of human tactile perception. It is demonstrated that a 2.65 mm (diameter) x 4 mm (height) generic tactor is suitable for practical applications in dynamic tactile displays. The maximum force of the actuator was 30 mN generated at current levels of 200 mA. At a stroke of 4.5 mm the force is reduced to 10 mN. The peak force was generated at a displacement of 1.5 mm. A total of 10 alpha-numeric symbols were displayed to the users via dynamically changing the location of the vibrating point in a predefined sequence, thus creating a tactile perception of continuous curve. Users were asked to sketch out the perceived symbols. Each subject carried out three experiments. The first experiment exposed all subjects to ten different characters. Data obtained from human subject tests suggest that users perceive most shapes accurately, however the existence of jump discontinuities in the flow of presentation of the curves lowers recognition efficiency most likely due to loss of sensation of solid reference point. Characters containing two or more discontinuous lines such as 'X' were more difficult to recognize in comparison to those described with a single line such as 'P', or 'Z'. Analysis of the average character recognition rate from 10 volunteers concluded that any presented character was identified correctly in 7 out 10 tests. The second test included characters that were reused from the first experiment. Users had improved their character recognition performance as a consequence of repeated exposure and learning. A final set of experiments concluded that recognition of groups of characters, forming words, is the least efficient and requires further perfecting. Recommendations for improvements of the recognition rate are also included.

AB - With the emergence of augmented and virtual-reality based information delivery technologies the gap between availability of communication devices for visually impaired people and sighted people is emerging. The current study describes a communication tool which provides a reading platform for visually impaired people by means of a haptic display. In this paper the development and human subject study based evaluation of an electromagnetic microactuator-array based virtual tactile display is presented. The actuator array is comprised of a 4 by 5 array of micro voice-coil actuators (tactors) providing vibrotactile stimulation on the user's fingertip. The size and performance of the actuators is evaluated against the thresholds of human tactile perception. It is demonstrated that a 2.65 mm (diameter) x 4 mm (height) generic tactor is suitable for practical applications in dynamic tactile displays. The maximum force of the actuator was 30 mN generated at current levels of 200 mA. At a stroke of 4.5 mm the force is reduced to 10 mN. The peak force was generated at a displacement of 1.5 mm. A total of 10 alpha-numeric symbols were displayed to the users via dynamically changing the location of the vibrating point in a predefined sequence, thus creating a tactile perception of continuous curve. Users were asked to sketch out the perceived symbols. Each subject carried out three experiments. The first experiment exposed all subjects to ten different characters. Data obtained from human subject tests suggest that users perceive most shapes accurately, however the existence of jump discontinuities in the flow of presentation of the curves lowers recognition efficiency most likely due to loss of sensation of solid reference point. Characters containing two or more discontinuous lines such as 'X' were more difficult to recognize in comparison to those described with a single line such as 'P', or 'Z'. Analysis of the average character recognition rate from 10 volunteers concluded that any presented character was identified correctly in 7 out 10 tests. The second test included characters that were reused from the first experiment. Users had improved their character recognition performance as a consequence of repeated exposure and learning. A final set of experiments concluded that recognition of groups of characters, forming words, is the least efficient and requires further perfecting. Recommendations for improvements of the recognition rate are also included.

UR - http://www.scopus.com/inward/record.url?scp=85021637866&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021637866&partnerID=8YFLogxK

U2 - 10.1115/IMECE201665404

DO - 10.1115/IMECE201665404

M3 - Conference contribution

AN - SCOPUS:85021637866

VL - 14

BT - Emerging Technologies; Materials

PB - American Society of Mechanical Engineers (ASME)

ER -