Development of the gin trap reflex in Manduca sexta: a comparison of larval and pupal motor responses

B. Waldrop, Richard B Levine

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

1. Responses of motor neurons in larvae and pupae of Manduca sexta to stimulation of tactile sensory neurons were measured in both semiintact, and isolated nerve cord preparations. These motor neurons innervate abdominal intersegmental muscles which are involved in the production of a general flexion reflex in the larva, and the closure reflex of the pupal gin traps. 2. Larval motor neurons respond to stimulation of sensory neurons innervating abdominal mechanosensory hairs with prolonged, tonic excitation ipsilaterally, and either weak excitation or inhibition contralaterally (Figs. 4A, 6). 3. Pupae respond to tactile stimulation of mechanosensory hairs within the gin traps with a rapid closure reflex. Motor neurons which innervate muscles ipsilateral to the stimulus exhibit a large depolarization, high frequency firing, and abrupt termination (Figs. 2, 4B). Generally, contralateral motor neurons fire antiphasically to the ipsilateral motor neurons, producing a characteristic triphasic firing pattern (Figs. 7, 8) which is not seen in the larva. 4. Pupal motor neurons can also respond to sensory stimulation with other types of patterns, including rotational responses (Fig. 3 A), gin trap opening reflexes (Fig. 3 B), and 'flip-flop' responses (Fig. 9). 5. Pupal motor neurons, like larval motor neurons, do not show oscillatory responses to tonic current injection, nor do motor neurons of either stage appear to interact synaptically with one another. Most pupal motor neurons also exhibit i-V properties similar to those of larval motor neurons (Table 1; Fig. 10). Some pupal motor neurons, however, show a marked non-linear response to depolarizing current injection (Fig. 11).

Original languageEnglish (US)
Pages (from-to)743-753
Number of pages11
JournalJournal of Comparative Physiology A
Volume165
Issue number6
DOIs
StatePublished - Nov 1989

Fingerprint

Manduca
Manduca sexta
Motor Neurons
motor neurons
reflexes
Reflex
traps
pupa
larva
hair
muscle
Larva
Pupa
sensory neurons
Touch
Sensory Receptor Cells
comparison
hairs
pupae
larvae

ASJC Scopus subject areas

  • Behavioral Neuroscience
  • Neuroscience(all)
  • Physiology (medical)
  • Physiology
  • Animal Science and Zoology

Cite this

Development of the gin trap reflex in Manduca sexta : a comparison of larval and pupal motor responses. / Waldrop, B.; Levine, Richard B.

In: Journal of Comparative Physiology A, Vol. 165, No. 6, 11.1989, p. 743-753.

Research output: Contribution to journalArticle

@article{e4063f205c5b412ca4b644b6b7378ea3,
title = "Development of the gin trap reflex in Manduca sexta: a comparison of larval and pupal motor responses",
abstract = "1. Responses of motor neurons in larvae and pupae of Manduca sexta to stimulation of tactile sensory neurons were measured in both semiintact, and isolated nerve cord preparations. These motor neurons innervate abdominal intersegmental muscles which are involved in the production of a general flexion reflex in the larva, and the closure reflex of the pupal gin traps. 2. Larval motor neurons respond to stimulation of sensory neurons innervating abdominal mechanosensory hairs with prolonged, tonic excitation ipsilaterally, and either weak excitation or inhibition contralaterally (Figs. 4A, 6). 3. Pupae respond to tactile stimulation of mechanosensory hairs within the gin traps with a rapid closure reflex. Motor neurons which innervate muscles ipsilateral to the stimulus exhibit a large depolarization, high frequency firing, and abrupt termination (Figs. 2, 4B). Generally, contralateral motor neurons fire antiphasically to the ipsilateral motor neurons, producing a characteristic triphasic firing pattern (Figs. 7, 8) which is not seen in the larva. 4. Pupal motor neurons can also respond to sensory stimulation with other types of patterns, including rotational responses (Fig. 3 A), gin trap opening reflexes (Fig. 3 B), and 'flip-flop' responses (Fig. 9). 5. Pupal motor neurons, like larval motor neurons, do not show oscillatory responses to tonic current injection, nor do motor neurons of either stage appear to interact synaptically with one another. Most pupal motor neurons also exhibit i-V properties similar to those of larval motor neurons (Table 1; Fig. 10). Some pupal motor neurons, however, show a marked non-linear response to depolarizing current injection (Fig. 11).",
author = "B. Waldrop and Levine, {Richard B}",
year = "1989",
month = "11",
doi = "10.1007/BF00610873",
language = "English (US)",
volume = "165",
pages = "743--753",
journal = "Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology",
issn = "0340-7594",
publisher = "Springer Verlag",
number = "6",

}

TY - JOUR

T1 - Development of the gin trap reflex in Manduca sexta

T2 - a comparison of larval and pupal motor responses

AU - Waldrop, B.

AU - Levine, Richard B

PY - 1989/11

Y1 - 1989/11

N2 - 1. Responses of motor neurons in larvae and pupae of Manduca sexta to stimulation of tactile sensory neurons were measured in both semiintact, and isolated nerve cord preparations. These motor neurons innervate abdominal intersegmental muscles which are involved in the production of a general flexion reflex in the larva, and the closure reflex of the pupal gin traps. 2. Larval motor neurons respond to stimulation of sensory neurons innervating abdominal mechanosensory hairs with prolonged, tonic excitation ipsilaterally, and either weak excitation or inhibition contralaterally (Figs. 4A, 6). 3. Pupae respond to tactile stimulation of mechanosensory hairs within the gin traps with a rapid closure reflex. Motor neurons which innervate muscles ipsilateral to the stimulus exhibit a large depolarization, high frequency firing, and abrupt termination (Figs. 2, 4B). Generally, contralateral motor neurons fire antiphasically to the ipsilateral motor neurons, producing a characteristic triphasic firing pattern (Figs. 7, 8) which is not seen in the larva. 4. Pupal motor neurons can also respond to sensory stimulation with other types of patterns, including rotational responses (Fig. 3 A), gin trap opening reflexes (Fig. 3 B), and 'flip-flop' responses (Fig. 9). 5. Pupal motor neurons, like larval motor neurons, do not show oscillatory responses to tonic current injection, nor do motor neurons of either stage appear to interact synaptically with one another. Most pupal motor neurons also exhibit i-V properties similar to those of larval motor neurons (Table 1; Fig. 10). Some pupal motor neurons, however, show a marked non-linear response to depolarizing current injection (Fig. 11).

AB - 1. Responses of motor neurons in larvae and pupae of Manduca sexta to stimulation of tactile sensory neurons were measured in both semiintact, and isolated nerve cord preparations. These motor neurons innervate abdominal intersegmental muscles which are involved in the production of a general flexion reflex in the larva, and the closure reflex of the pupal gin traps. 2. Larval motor neurons respond to stimulation of sensory neurons innervating abdominal mechanosensory hairs with prolonged, tonic excitation ipsilaterally, and either weak excitation or inhibition contralaterally (Figs. 4A, 6). 3. Pupae respond to tactile stimulation of mechanosensory hairs within the gin traps with a rapid closure reflex. Motor neurons which innervate muscles ipsilateral to the stimulus exhibit a large depolarization, high frequency firing, and abrupt termination (Figs. 2, 4B). Generally, contralateral motor neurons fire antiphasically to the ipsilateral motor neurons, producing a characteristic triphasic firing pattern (Figs. 7, 8) which is not seen in the larva. 4. Pupal motor neurons can also respond to sensory stimulation with other types of patterns, including rotational responses (Fig. 3 A), gin trap opening reflexes (Fig. 3 B), and 'flip-flop' responses (Fig. 9). 5. Pupal motor neurons, like larval motor neurons, do not show oscillatory responses to tonic current injection, nor do motor neurons of either stage appear to interact synaptically with one another. Most pupal motor neurons also exhibit i-V properties similar to those of larval motor neurons (Table 1; Fig. 10). Some pupal motor neurons, however, show a marked non-linear response to depolarizing current injection (Fig. 11).

UR - http://www.scopus.com/inward/record.url?scp=0024745863&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024745863&partnerID=8YFLogxK

U2 - 10.1007/BF00610873

DO - 10.1007/BF00610873

M3 - Article

C2 - 2810148

AN - SCOPUS:0024745863

VL - 165

SP - 743

EP - 753

JO - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology

JF - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology

SN - 0340-7594

IS - 6

ER -