Developmental changes in the modulation of synaptic glycine receptors by ethanol

Erika D. Eggers, Jennifer A. O'Brien, Albert J. Berger

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

During postnatal motoneuron development, the glycine receptor (GlyR) α subunit changes from α2 (fetal) to α1 (adult). To study the effect this change has on ethanol potentiation of GlyR currents in hypoglossal motoneurons (HMs), we placed neurons into two groups: neonate [postnatal day 1 to 3 (P1-3)], primarily expressing α2, and juvenile (P9-13), primarily expressing α1. We found that glycinergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in neonate HMs are less sensitive to ethanol than in juveniles. Thirty millimolar ethanol increased the amplitude of juvenile mIPSCs but did not significantly change neonatal mIPSCs. However, 100 mM ethanol increased the amplitudes of both neonate and juvenile mIPSCs. There was a significant difference between age groups in the average ethanol-induced increase in mIPSC amplitude for 10, 30, 50, and 100 mM ethanol. In both age groups ethanol increased the frequency of glycinergic mIPSCs, but there was no difference in the amount of frequency increase between age groups. Ethanol (100 mM) also potentiated evoked IPSCs (eIPSCs) in both neonate and juvenile HMs. As we observed for mIPSCs, 30 mM ethanol increased the amplitude of juvenile eIPSCs, but had no significant effect on eIPSCs in neonate HMs. Ethanol also potentiated currents induced by exogenously applied glycine in both neonate and juvenile HMs. These results suggest that ethanol directly modulates the GlyR. To investigate possible mechanisms for this, we analyzed the time course of mIPSCs and single-channel conductance of the GlyR in the presence and absence of ethanol. We found that ethanol did not significantly change the time course of mIPSCs. We also determined that ethanol did not significantly change the single-channel conductance of synaptic GlyRs, as estimated by nonstationary noise analysis of mIPSCs. We conclude that the adult form of the native GlyR is more sensitive to ethanol than the fetal form. Further, enhancement of GlyR currents involves mechanisms other than an increase in the single-channel conductance or factors that alter the decay kinetics.

Original languageEnglish (US)
Pages (from-to)2409-2416
Number of pages8
JournalJournal of neurophysiology
Volume84
Issue number5
DOIs
StatePublished - 2000
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology

Fingerprint Dive into the research topics of 'Developmental changes in the modulation of synaptic glycine receptors by ethanol'. Together they form a unique fingerprint.

Cite this