Dieudonné; crystals and Wach modules for p-divisible groups

Bryden R Cais, Eike Lau

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Let k be a perfect field of characteristic p > 2 and K an extension of F = FracW(k) contained in some F(μpr ). Using crystalline Dieudonné; theory, we provide a classification of p-divisible groups over R = OK[[t1,. ., td]] in terms of finite height (Ρ, τ)-modules over S := W(k)[[u, t1,. ., td]]. When d = 0, such a classification is a consequence of (a special case of) the theory of Kisin-Ren; in this setting, our construction gives an independent proof of this result, and moreover allows us to recover the Dieudonné; crystal of a p-divisible group from the Wach module associated to its Tate module by Berger-Breuil or by Kisin-Ren.

Original languageEnglish (US)
Pages (from-to)733-763
Number of pages31
JournalProceedings of the London Mathematical Society
Volume114
Issue number4
DOIs
StatePublished - 2017

Fingerprint

Divisible
Crystal
Module

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Dieudonné; crystals and Wach modules for p-divisible groups. / Cais, Bryden R; Lau, Eike.

In: Proceedings of the London Mathematical Society, Vol. 114, No. 4, 2017, p. 733-763.

Research output: Contribution to journalArticle

@article{27098b5a461c434e8c32c22432373f4e,
title = "Dieudonn{\'e}; crystals and Wach modules for p-divisible groups",
abstract = "Let k be a perfect field of characteristic p > 2 and K an extension of F = FracW(k) contained in some F(μpr ). Using crystalline Dieudonn{\'e}; theory, we provide a classification of p-divisible groups over R = OK[[t1,. ., td]] in terms of finite height (Ρ, τ)-modules over S := W(k)[[u, t1,. ., td]]. When d = 0, such a classification is a consequence of (a special case of) the theory of Kisin-Ren; in this setting, our construction gives an independent proof of this result, and moreover allows us to recover the Dieudonn{\'e}; crystal of a p-divisible group from the Wach module associated to its Tate module by Berger-Breuil or by Kisin-Ren.",
author = "Cais, {Bryden R} and Eike Lau",
year = "2017",
doi = "10.1112/plms.12021",
language = "English (US)",
volume = "114",
pages = "733--763",
journal = "Proceedings of the London Mathematical Society",
issn = "0024-6115",
publisher = "Oxford University Press",
number = "4",

}

TY - JOUR

T1 - Dieudonné; crystals and Wach modules for p-divisible groups

AU - Cais, Bryden R

AU - Lau, Eike

PY - 2017

Y1 - 2017

N2 - Let k be a perfect field of characteristic p > 2 and K an extension of F = FracW(k) contained in some F(μpr ). Using crystalline Dieudonné; theory, we provide a classification of p-divisible groups over R = OK[[t1,. ., td]] in terms of finite height (Ρ, τ)-modules over S := W(k)[[u, t1,. ., td]]. When d = 0, such a classification is a consequence of (a special case of) the theory of Kisin-Ren; in this setting, our construction gives an independent proof of this result, and moreover allows us to recover the Dieudonné; crystal of a p-divisible group from the Wach module associated to its Tate module by Berger-Breuil or by Kisin-Ren.

AB - Let k be a perfect field of characteristic p > 2 and K an extension of F = FracW(k) contained in some F(μpr ). Using crystalline Dieudonné; theory, we provide a classification of p-divisible groups over R = OK[[t1,. ., td]] in terms of finite height (Ρ, τ)-modules over S := W(k)[[u, t1,. ., td]]. When d = 0, such a classification is a consequence of (a special case of) the theory of Kisin-Ren; in this setting, our construction gives an independent proof of this result, and moreover allows us to recover the Dieudonné; crystal of a p-divisible group from the Wach module associated to its Tate module by Berger-Breuil or by Kisin-Ren.

UR - http://www.scopus.com/inward/record.url?scp=85025131021&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85025131021&partnerID=8YFLogxK

U2 - 10.1112/plms.12021

DO - 10.1112/plms.12021

M3 - Article

VL - 114

SP - 733

EP - 763

JO - Proceedings of the London Mathematical Society

JF - Proceedings of the London Mathematical Society

SN - 0024-6115

IS - 4

ER -