Diffusion kinetics of Cr in olivine and 53Mn-53Cr thermochronology of early solar system objects

Research output: Contribution to journalArticle

82 Citations (Scopus)

Abstract

We have determined the diffusion coefficient of Cr in olivine as function of temperature, oxygen fugacity (fO2), and crystallographic orientation and used these data to develop a quantitative understanding of the resetting of the short-lived 53Mn-53Cr decay system in olivine during cooling within meteorite parent body. The diffusion of Cr in olivine was found to be anisotropic, and effectively independent of fO2 between wüstite-iron buffer and two orders of magnitude above this buffer. The diffusion data were used to calculate the spatially averaged mean closure temperature of the 53Mn-53Cr decay system in olivine as function of the initial temperature, cooling rate and grain size, and also the closure age profile of this system in olivine single crystal as function of radial distance and a dimensionless parameter that incorporates the effects of various parameters that affect the closure age. We also present a thermochronolgic formulation that permits retrieval of cooling rates from the extent of resetting of the bulk 53Mn-53Cr closure age of olivine during cooling. This method was applied to determine the cooling rate of the pallasite Omolon, which showed 53Mn-53Cr bulk age of olivine that is 10 Myr younger than the age of the solar system. The calculated cooling rate, which is 20-40 °C/Myr at ∼985-1000 °C, is in good agreement with the metallographic cooling rate at ∼500 °C, when the two results are considered in terms of a cooling model in which the reciprocal temperature increases linearly with time. The inferred cooling rate of Omolon, which seems to be a sample from the core-mantle boundary, yields a burial depth of ∼30 km in a parent body of at least ∼100 km radius.

Original languageEnglish (US)
Pages (from-to)799-809
Number of pages11
JournalGeochimica et Cosmochimica Acta
Volume70
Issue number3
DOIs
StatePublished - Feb 1 2006

Fingerprint

thermochronology
Solar system
solar system
olivine
Cooling
cooling
kinetics
Kinetics
resetting
parent body
Buffers
Meteorites
closure temperature
Temperature
core-mantle boundary
temperature
fugacity
meteorite
rate
grain size

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

Diffusion kinetics of Cr in olivine and 53Mn-53Cr thermochronology of early solar system objects. / Ito, Motoo; Ganguly, Jibamitra.

In: Geochimica et Cosmochimica Acta, Vol. 70, No. 3, 01.02.2006, p. 799-809.

Research output: Contribution to journalArticle

@article{fca49714364e4dc4980217950543b644,
title = "Diffusion kinetics of Cr in olivine and 53Mn-53Cr thermochronology of early solar system objects",
abstract = "We have determined the diffusion coefficient of Cr in olivine as function of temperature, oxygen fugacity (fO2), and crystallographic orientation and used these data to develop a quantitative understanding of the resetting of the short-lived 53Mn-53Cr decay system in olivine during cooling within meteorite parent body. The diffusion of Cr in olivine was found to be anisotropic, and effectively independent of fO2 between w{\"u}stite-iron buffer and two orders of magnitude above this buffer. The diffusion data were used to calculate the spatially averaged mean closure temperature of the 53Mn-53Cr decay system in olivine as function of the initial temperature, cooling rate and grain size, and also the closure age profile of this system in olivine single crystal as function of radial distance and a dimensionless parameter that incorporates the effects of various parameters that affect the closure age. We also present a thermochronolgic formulation that permits retrieval of cooling rates from the extent of resetting of the bulk 53Mn-53Cr closure age of olivine during cooling. This method was applied to determine the cooling rate of the pallasite Omolon, which showed 53Mn-53Cr bulk age of olivine that is 10 Myr younger than the age of the solar system. The calculated cooling rate, which is 20-40 °C/Myr at ∼985-1000 °C, is in good agreement with the metallographic cooling rate at ∼500 °C, when the two results are considered in terms of a cooling model in which the reciprocal temperature increases linearly with time. The inferred cooling rate of Omolon, which seems to be a sample from the core-mantle boundary, yields a burial depth of ∼30 km in a parent body of at least ∼100 km radius.",
author = "Motoo Ito and Jibamitra Ganguly",
year = "2006",
month = "2",
day = "1",
doi = "10.1016/j.gca.2005.09.020",
language = "English (US)",
volume = "70",
pages = "799--809",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "3",

}

TY - JOUR

T1 - Diffusion kinetics of Cr in olivine and 53Mn-53Cr thermochronology of early solar system objects

AU - Ito, Motoo

AU - Ganguly, Jibamitra

PY - 2006/2/1

Y1 - 2006/2/1

N2 - We have determined the diffusion coefficient of Cr in olivine as function of temperature, oxygen fugacity (fO2), and crystallographic orientation and used these data to develop a quantitative understanding of the resetting of the short-lived 53Mn-53Cr decay system in olivine during cooling within meteorite parent body. The diffusion of Cr in olivine was found to be anisotropic, and effectively independent of fO2 between wüstite-iron buffer and two orders of magnitude above this buffer. The diffusion data were used to calculate the spatially averaged mean closure temperature of the 53Mn-53Cr decay system in olivine as function of the initial temperature, cooling rate and grain size, and also the closure age profile of this system in olivine single crystal as function of radial distance and a dimensionless parameter that incorporates the effects of various parameters that affect the closure age. We also present a thermochronolgic formulation that permits retrieval of cooling rates from the extent of resetting of the bulk 53Mn-53Cr closure age of olivine during cooling. This method was applied to determine the cooling rate of the pallasite Omolon, which showed 53Mn-53Cr bulk age of olivine that is 10 Myr younger than the age of the solar system. The calculated cooling rate, which is 20-40 °C/Myr at ∼985-1000 °C, is in good agreement with the metallographic cooling rate at ∼500 °C, when the two results are considered in terms of a cooling model in which the reciprocal temperature increases linearly with time. The inferred cooling rate of Omolon, which seems to be a sample from the core-mantle boundary, yields a burial depth of ∼30 km in a parent body of at least ∼100 km radius.

AB - We have determined the diffusion coefficient of Cr in olivine as function of temperature, oxygen fugacity (fO2), and crystallographic orientation and used these data to develop a quantitative understanding of the resetting of the short-lived 53Mn-53Cr decay system in olivine during cooling within meteorite parent body. The diffusion of Cr in olivine was found to be anisotropic, and effectively independent of fO2 between wüstite-iron buffer and two orders of magnitude above this buffer. The diffusion data were used to calculate the spatially averaged mean closure temperature of the 53Mn-53Cr decay system in olivine as function of the initial temperature, cooling rate and grain size, and also the closure age profile of this system in olivine single crystal as function of radial distance and a dimensionless parameter that incorporates the effects of various parameters that affect the closure age. We also present a thermochronolgic formulation that permits retrieval of cooling rates from the extent of resetting of the bulk 53Mn-53Cr closure age of olivine during cooling. This method was applied to determine the cooling rate of the pallasite Omolon, which showed 53Mn-53Cr bulk age of olivine that is 10 Myr younger than the age of the solar system. The calculated cooling rate, which is 20-40 °C/Myr at ∼985-1000 °C, is in good agreement with the metallographic cooling rate at ∼500 °C, when the two results are considered in terms of a cooling model in which the reciprocal temperature increases linearly with time. The inferred cooling rate of Omolon, which seems to be a sample from the core-mantle boundary, yields a burial depth of ∼30 km in a parent body of at least ∼100 km radius.

UR - http://www.scopus.com/inward/record.url?scp=31144439534&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=31144439534&partnerID=8YFLogxK

U2 - 10.1016/j.gca.2005.09.020

DO - 10.1016/j.gca.2005.09.020

M3 - Article

AN - SCOPUS:31144439534

VL - 70

SP - 799

EP - 809

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 3

ER -