Dinoflagellates: A remarkable evolutionary experiment

Jeremiah D. Hackett, Donald M. Anderson, Deana L. Erdner, Debashish Bhattacharya

Research output: Contribution to journalReview article

256 Scopus citations

Abstract

In this paper, we focus on dinoflagellate ecology, toxin production, fossil record, and a molecular phylogenetic analysis of hosts and plastids. Of ecological interest are the swimming and feeding behavior, bioluminescence, and symbioses of dinoflagellates with corals. The many varieties of dinoflagellate toxins, their biological effects, and current knowledge of their origin are discussed. Knowledge of dinoflagellate evolution is aided by a rich fossil record that can be used to document their emergence and diversification. However, recent biogeochemical studies indicate that dinoflagellates may be much older than previously believed. A remarkable feature of dinoflagellates is their unique genome structure and gene regulation. The nuclear genomes of these algae are of enormous size, lack nucleosomes, and have permanently condensed chromosomes. This chapter reviews the current knowledge of gene regulation and transcription in dinoflagellates with regard to the unique aspects of the nuclear genome. Previous work shows the plastid genome of typical dinoflagellates to have been reduced to single-gene minicircles that encode only a small number of proteins. Recent studies have demonstrated that the majority of the plastid genome has been transferred to the nucleus, which makes the dinoflagellates the only eukaryotes to encode the majority of typical plastid genes in the nucleus. The evolution of the dinoflagellate plastid and the implications of these results for understanding organellar genome evolution are discussed.

Original languageEnglish (US)
Pages (from-to)1523-1534
Number of pages12
JournalAmerican journal of botany
Volume91
Issue number10
DOIs
StatePublished - Oct 1 2004
Externally publishedYes

Keywords

  • Dinoflagellate
  • Endosymbiosis
  • Evolution
  • Harmful algal blooms

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Plant Science

Fingerprint Dive into the research topics of 'Dinoflagellates: A remarkable evolutionary experiment'. Together they form a unique fingerprint.

  • Cite this