TY - JOUR
T1 - Dissecting quantitative resistance against blast disease using heterogeneous inbred family lines in rice
AU - Liu, Yan
AU - Zhang, Gaisheng
AU - Bernardo, Marichu
AU - Leung, Hei
AU - Zhu, Xiao Yuan
AU - Zhang, Shaohong
AU - Liu, Bin
AU - Edwards, Jeremy
AU - Galbraith, David W.
AU - Leach, Jan
PY - 2011/2/1
Y1 - 2011/2/1
N2 - SHZ-2 is an indica rice cultivar that exhibits broad-spectrum resistance to rice blast; it is widely used as a resistance donor in breeding programs. To dissect the QTL responsible for broad-spectrum blast resistance, we crossed SHZ-2 to TXZ-13, a blast susceptible indica variety, to produce 244 BC4F3 lines. These lines were evaluated for blast resistance in greenhouse and Weld conditions. Chromosomal introgressions from SHZ-2 into the TXZ-13 genome were identiWed using a single feature polymorphism microarray, SSR markers and gene-speciWc primers. Segregation analysis of the BC4F3 population indicated that three regions on chromosomes 2, 6, and 9, designated as qBR2.1, qBR6.1, and qBR9.1, respectively, was associated with blast resistance and contributed 16.2, 14.9, and 22.3%, respectively, to the phenotypic variance of diseased leaf area (DLA). We further narrowed the three QTL regions using pairs of sister lines extracted from heterogeneous inbred families (HIF). Pairwise comparison of these lines enabled the determination of the relative contributions of individual QTL. The qBR9.1 conferred strong resistance, whereas qBR2.1 or qBR6.1 individually did not reduce disease under Weld conditions. However, when qBR2.1 and qBR6.1 were combined, they reduced disease by 19.5%, suggesting that small eVect QTLs contribute to reduction of epidemics. The qBR6.1 and qBR9.1 regions contain nucleotide-binding sites and leucine rich repeats (NBS-LRR) sequences, whereas the qBR2.1 did not. In the qBR6.1 region, the patterns of expression of adjacent NBS-LRR genes were consistent in backcross generations and correlated with blast resistance, supporting the hypothesis that multiple resistance genes within a QTL region can contribute to non-race-speciWc quantitative resistance.
AB - SHZ-2 is an indica rice cultivar that exhibits broad-spectrum resistance to rice blast; it is widely used as a resistance donor in breeding programs. To dissect the QTL responsible for broad-spectrum blast resistance, we crossed SHZ-2 to TXZ-13, a blast susceptible indica variety, to produce 244 BC4F3 lines. These lines were evaluated for blast resistance in greenhouse and Weld conditions. Chromosomal introgressions from SHZ-2 into the TXZ-13 genome were identiWed using a single feature polymorphism microarray, SSR markers and gene-speciWc primers. Segregation analysis of the BC4F3 population indicated that three regions on chromosomes 2, 6, and 9, designated as qBR2.1, qBR6.1, and qBR9.1, respectively, was associated with blast resistance and contributed 16.2, 14.9, and 22.3%, respectively, to the phenotypic variance of diseased leaf area (DLA). We further narrowed the three QTL regions using pairs of sister lines extracted from heterogeneous inbred families (HIF). Pairwise comparison of these lines enabled the determination of the relative contributions of individual QTL. The qBR9.1 conferred strong resistance, whereas qBR2.1 or qBR6.1 individually did not reduce disease under Weld conditions. However, when qBR2.1 and qBR6.1 were combined, they reduced disease by 19.5%, suggesting that small eVect QTLs contribute to reduction of epidemics. The qBR6.1 and qBR9.1 regions contain nucleotide-binding sites and leucine rich repeats (NBS-LRR) sequences, whereas the qBR2.1 did not. In the qBR6.1 region, the patterns of expression of adjacent NBS-LRR genes were consistent in backcross generations and correlated with blast resistance, supporting the hypothesis that multiple resistance genes within a QTL region can contribute to non-race-speciWc quantitative resistance.
UR - http://www.scopus.com/inward/record.url?scp=79952275469&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952275469&partnerID=8YFLogxK
U2 - 10.1007/s00122-010-1450-2
DO - 10.1007/s00122-010-1450-2
M3 - Article
C2 - 20872132
AN - SCOPUS:79952275469
VL - 122
SP - 341
EP - 353
JO - Theoretical And Applied Genetics
JF - Theoretical And Applied Genetics
SN - 0040-5752
IS - 2
ER -