DNA interstrand cross-linking, DNA sequence specificity, and induced conformational changes produced by a dimeric analog of (+)-CC-1065

Z. M. Ding, Laurence Hurley

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

U-77779 is a symmetrical dimer of the spirocyclopropyl allkylating subunit of (+)-CC-1065 in which the linker consists of two indole subunits separated by a ureido group. This compound was synthesized by scientists of the Upjohn Company and was found to be more active in both anti-tumor efficacy and cytotoxicity than its mono-alkylating analogs. Using three different 21-base pair DNA duplexes containing U-77779 reactive sequences, we have shown that U-77779 produces a stable interstrand cross-linked species that loses its internal self complementarity. A comparison of U-77779 with the mono-alkylating analogs of (+)-CC-1065 shows that it appears to have an increased sequence selectivity such that, while monoalkylating compounds like (+)-CC-1065 react at more than one site, U-77779 reacts only at sites where there are two suitably positioned alkylation sites. Chemical footprinting with 1,10-phenanthroline-copper complex revealed a six base pair cross-linked region between the two covalently modified adenines with modulated cleavage outside this region. In the case of hydroxyl radical footprinting, considerable variability of the extent of cleavage within the cross-linked sequence was found. These results are discussed in terms of likely induced conformational changes in DNA. In contrast to (+)-CC-1065, non-denaturing gel electrophoresis did not reveal any net bending of DNA due to U-77779, which we believe is due to the 180 out-of-phase bending produced on opposite strands of DNA by the cross-linker.

Original languageEnglish (US)
Pages (from-to)427-452
Number of pages26
JournalAnti-Cancer Drug Design
Volume6
Issue number5
StatePublished - 1991
Externally publishedYes

Fingerprint

CC 1065
DNA sequences
DNA
Base Pairing
Alkylation
Adenine
Cytotoxicity
Electrophoresis
Hydroxyl Radical
Dimers
bizelesin
Tumors
Gels

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Organic Chemistry
  • Oncology
  • Drug Discovery
  • Pharmacology

Cite this

@article{8265b831a92c4a0c8d1d52a6243b9483,
title = "DNA interstrand cross-linking, DNA sequence specificity, and induced conformational changes produced by a dimeric analog of (+)-CC-1065",
abstract = "U-77779 is a symmetrical dimer of the spirocyclopropyl allkylating subunit of (+)-CC-1065 in which the linker consists of two indole subunits separated by a ureido group. This compound was synthesized by scientists of the Upjohn Company and was found to be more active in both anti-tumor efficacy and cytotoxicity than its mono-alkylating analogs. Using three different 21-base pair DNA duplexes containing U-77779 reactive sequences, we have shown that U-77779 produces a stable interstrand cross-linked species that loses its internal self complementarity. A comparison of U-77779 with the mono-alkylating analogs of (+)-CC-1065 shows that it appears to have an increased sequence selectivity such that, while monoalkylating compounds like (+)-CC-1065 react at more than one site, U-77779 reacts only at sites where there are two suitably positioned alkylation sites. Chemical footprinting with 1,10-phenanthroline-copper complex revealed a six base pair cross-linked region between the two covalently modified adenines with modulated cleavage outside this region. In the case of hydroxyl radical footprinting, considerable variability of the extent of cleavage within the cross-linked sequence was found. These results are discussed in terms of likely induced conformational changes in DNA. In contrast to (+)-CC-1065, non-denaturing gel electrophoresis did not reveal any net bending of DNA due to U-77779, which we believe is due to the 180 out-of-phase bending produced on opposite strands of DNA by the cross-linker.",
author = "Ding, {Z. M.} and Laurence Hurley",
year = "1991",
language = "English (US)",
volume = "6",
pages = "427--452",
journal = "Anti-Cancer Drug Design",
issn = "0266-9536",
publisher = "Cognizant Communication Corporation",
number = "5",

}

TY - JOUR

T1 - DNA interstrand cross-linking, DNA sequence specificity, and induced conformational changes produced by a dimeric analog of (+)-CC-1065

AU - Ding, Z. M.

AU - Hurley, Laurence

PY - 1991

Y1 - 1991

N2 - U-77779 is a symmetrical dimer of the spirocyclopropyl allkylating subunit of (+)-CC-1065 in which the linker consists of two indole subunits separated by a ureido group. This compound was synthesized by scientists of the Upjohn Company and was found to be more active in both anti-tumor efficacy and cytotoxicity than its mono-alkylating analogs. Using three different 21-base pair DNA duplexes containing U-77779 reactive sequences, we have shown that U-77779 produces a stable interstrand cross-linked species that loses its internal self complementarity. A comparison of U-77779 with the mono-alkylating analogs of (+)-CC-1065 shows that it appears to have an increased sequence selectivity such that, while monoalkylating compounds like (+)-CC-1065 react at more than one site, U-77779 reacts only at sites where there are two suitably positioned alkylation sites. Chemical footprinting with 1,10-phenanthroline-copper complex revealed a six base pair cross-linked region between the two covalently modified adenines with modulated cleavage outside this region. In the case of hydroxyl radical footprinting, considerable variability of the extent of cleavage within the cross-linked sequence was found. These results are discussed in terms of likely induced conformational changes in DNA. In contrast to (+)-CC-1065, non-denaturing gel electrophoresis did not reveal any net bending of DNA due to U-77779, which we believe is due to the 180 out-of-phase bending produced on opposite strands of DNA by the cross-linker.

AB - U-77779 is a symmetrical dimer of the spirocyclopropyl allkylating subunit of (+)-CC-1065 in which the linker consists of two indole subunits separated by a ureido group. This compound was synthesized by scientists of the Upjohn Company and was found to be more active in both anti-tumor efficacy and cytotoxicity than its mono-alkylating analogs. Using three different 21-base pair DNA duplexes containing U-77779 reactive sequences, we have shown that U-77779 produces a stable interstrand cross-linked species that loses its internal self complementarity. A comparison of U-77779 with the mono-alkylating analogs of (+)-CC-1065 shows that it appears to have an increased sequence selectivity such that, while monoalkylating compounds like (+)-CC-1065 react at more than one site, U-77779 reacts only at sites where there are two suitably positioned alkylation sites. Chemical footprinting with 1,10-phenanthroline-copper complex revealed a six base pair cross-linked region between the two covalently modified adenines with modulated cleavage outside this region. In the case of hydroxyl radical footprinting, considerable variability of the extent of cleavage within the cross-linked sequence was found. These results are discussed in terms of likely induced conformational changes in DNA. In contrast to (+)-CC-1065, non-denaturing gel electrophoresis did not reveal any net bending of DNA due to U-77779, which we believe is due to the 180 out-of-phase bending produced on opposite strands of DNA by the cross-linker.

UR - http://www.scopus.com/inward/record.url?scp=0026331825&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026331825&partnerID=8YFLogxK

M3 - Article

C2 - 1662513

AN - SCOPUS:0026331825

VL - 6

SP - 427

EP - 452

JO - Anti-Cancer Drug Design

JF - Anti-Cancer Drug Design

SN - 0266-9536

IS - 5

ER -