Does an Early Spring Indicate an Early Summer? Relationships Between Intraseasonal Growing Degree Day Thresholds

Research output: Contribution to journalArticle

Abstract

Spring heat accumulation plays a major role in the timing of events such as leaf-out, leaf expansion, flowering, and insect hatch in temperate systems. Accordingly, heat accumulation can serve as a proxy for the timing of plant and insect phenological activity and can be used in a predictive way when the timing of heat accumulation thresholds being reached can be anticipated. This has strong value for a host of planning and management applications. If relationships exist between earlier- and later-season thresholds at a location, then the timing of later-season phenological events that are forced by the accumulation of warmth could be anticipated based on when earlier-season thresholds are met. Using high-resolution daily temperature data, we calculated the coherence in pairs of spring-season heat accumulation (growing degree day) threshold anomalies over 1948–2016. Overall, relationships between thresholds spanning the entire spring season were relatively low, while later season thresholds exhibited much higher correlations. This pattern is generally the result of decreasing variability in heat accumulation with season progression. However, correlation strengths did not follow latitudinal or gradients, revealing that within-season heat accumulation and interannual variability in threshold timing are unique to the specified base temperature and thresholds being compared. We show that the relationships between earlier- and later-season heat accumulation thresholds were sufficient to accurately predict the timing of phenological events in plants in two case examples.

Original languageEnglish (US)
JournalJournal of Geophysical Research: Biogeosciences
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

heat sums
summer
thresholds
heat
time measurement
insects
spring (season)
leaves
Hatches
hatches
insect
Hot Temperature
leaf development
progressions
flowering
planning
Planning
temperature
Temperature
anomalies

Keywords

  • ecological forecasting
  • growing degree days
  • seasonality

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

@article{3e76f6821c0648caa5a070f5d1ce5279,
title = "Does an Early Spring Indicate an Early Summer? Relationships Between Intraseasonal Growing Degree Day Thresholds",
abstract = "Spring heat accumulation plays a major role in the timing of events such as leaf-out, leaf expansion, flowering, and insect hatch in temperate systems. Accordingly, heat accumulation can serve as a proxy for the timing of plant and insect phenological activity and can be used in a predictive way when the timing of heat accumulation thresholds being reached can be anticipated. This has strong value for a host of planning and management applications. If relationships exist between earlier- and later-season thresholds at a location, then the timing of later-season phenological events that are forced by the accumulation of warmth could be anticipated based on when earlier-season thresholds are met. Using high-resolution daily temperature data, we calculated the coherence in pairs of spring-season heat accumulation (growing degree day) threshold anomalies over 1948–2016. Overall, relationships between thresholds spanning the entire spring season were relatively low, while later season thresholds exhibited much higher correlations. This pattern is generally the result of decreasing variability in heat accumulation with season progression. However, correlation strengths did not follow latitudinal or gradients, revealing that within-season heat accumulation and interannual variability in threshold timing are unique to the specified base temperature and thresholds being compared. We show that the relationships between earlier- and later-season heat accumulation thresholds were sufficient to accurately predict the timing of phenological events in plants in two case examples.",
keywords = "ecological forecasting, growing degree days, seasonality",
author = "Michael Crimmins and Crimmins, {Theresa M}",
year = "2019",
month = "1",
day = "1",
doi = "10.1029/2019JG005297",
language = "English (US)",
journal = "Journal of Geophysical Research: Space Physics",
issn = "2169-9380",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Does an Early Spring Indicate an Early Summer? Relationships Between Intraseasonal Growing Degree Day Thresholds

AU - Crimmins, Michael

AU - Crimmins, Theresa M

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Spring heat accumulation plays a major role in the timing of events such as leaf-out, leaf expansion, flowering, and insect hatch in temperate systems. Accordingly, heat accumulation can serve as a proxy for the timing of plant and insect phenological activity and can be used in a predictive way when the timing of heat accumulation thresholds being reached can be anticipated. This has strong value for a host of planning and management applications. If relationships exist between earlier- and later-season thresholds at a location, then the timing of later-season phenological events that are forced by the accumulation of warmth could be anticipated based on when earlier-season thresholds are met. Using high-resolution daily temperature data, we calculated the coherence in pairs of spring-season heat accumulation (growing degree day) threshold anomalies over 1948–2016. Overall, relationships between thresholds spanning the entire spring season were relatively low, while later season thresholds exhibited much higher correlations. This pattern is generally the result of decreasing variability in heat accumulation with season progression. However, correlation strengths did not follow latitudinal or gradients, revealing that within-season heat accumulation and interannual variability in threshold timing are unique to the specified base temperature and thresholds being compared. We show that the relationships between earlier- and later-season heat accumulation thresholds were sufficient to accurately predict the timing of phenological events in plants in two case examples.

AB - Spring heat accumulation plays a major role in the timing of events such as leaf-out, leaf expansion, flowering, and insect hatch in temperate systems. Accordingly, heat accumulation can serve as a proxy for the timing of plant and insect phenological activity and can be used in a predictive way when the timing of heat accumulation thresholds being reached can be anticipated. This has strong value for a host of planning and management applications. If relationships exist between earlier- and later-season thresholds at a location, then the timing of later-season phenological events that are forced by the accumulation of warmth could be anticipated based on when earlier-season thresholds are met. Using high-resolution daily temperature data, we calculated the coherence in pairs of spring-season heat accumulation (growing degree day) threshold anomalies over 1948–2016. Overall, relationships between thresholds spanning the entire spring season were relatively low, while later season thresholds exhibited much higher correlations. This pattern is generally the result of decreasing variability in heat accumulation with season progression. However, correlation strengths did not follow latitudinal or gradients, revealing that within-season heat accumulation and interannual variability in threshold timing are unique to the specified base temperature and thresholds being compared. We show that the relationships between earlier- and later-season heat accumulation thresholds were sufficient to accurately predict the timing of phenological events in plants in two case examples.

KW - ecological forecasting

KW - growing degree days

KW - seasonality

UR - http://www.scopus.com/inward/record.url?scp=85071418716&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071418716&partnerID=8YFLogxK

U2 - 10.1029/2019JG005297

DO - 10.1029/2019JG005297

M3 - Article

AN - SCOPUS:85071418716

JO - Journal of Geophysical Research: Space Physics

JF - Journal of Geophysical Research: Space Physics

SN - 2169-9380

ER -