Dryland hydrology in a warmer world

Lessons from the Last Glacial period

Jay Quade, W. S. Broecker

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

It has long been recognized that the tropics were drier and mid-latitude deserts wetter during the Last Glacial Maximum (LGM). Until now there has not been a single, unifying explanation for this pattern. Recently, Held and Soden [34] suggested that ongoing global warming will cause the Earth's drylands to become progressively drier and its tropics to become progressively wetter. Because no suitable "warm world" analogue is available in the paleoclimate record, the best available test of Held and Soden's proposal is to look at records from the last glacial period in which drylands should have been wetter and the tropics drier. Our survey of the recent paleolake literature confirms that closed basin lakes located in the poleward limits (∼40) of the drylands in both hemispheres were far larger during the Last Glacial Maximum and parts of the tropics appear to have been less wet. While these observations are consistent with Held's prediction, evidence from the sub-tropical drylands (15 to 25°) is more complex. As with high-latitude drylands, lakes in subtropical drylands of South America and probably the Kalahari Desert were larger than present during the LGM. By contrast, lakes in the sub-tropical Sahara and Arabian Deserts of the northern hemisphere were largest in the early Holocene, but also apparently larger than today in the early LGM. What paleolake records show are that 1) a strong hemispheric symmetry in lake response occurred during the LGM, 2) a difference in response occurred during the latest-glacial, and 3) lake expansions occurred in response to shifts in the thermal equator related to Heinrich Events and insolation variation as well as to colder temperatures.

Original languageEnglish (US)
Pages (from-to)21-36
Number of pages16
JournalEuropean Physical Journal: Special Topics
Volume176
Issue number1
DOIs
StatePublished - 2009

Fingerprint

hydrology
Hydrology
Tropics
lakes
Lakes
tropical regions
deserts
Sahara Desert (Africa)
insolation
Incident solar radiation
global warming
Global warming
Northern Hemisphere
equators
hemispheres
Catchments
polar regions
proposals
Earth (planet)
analogs

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Materials Science(all)
  • Physical and Theoretical Chemistry

Cite this

Dryland hydrology in a warmer world : Lessons from the Last Glacial period. / Quade, Jay; Broecker, W. S.

In: European Physical Journal: Special Topics, Vol. 176, No. 1, 2009, p. 21-36.

Research output: Contribution to journalArticle

@article{122a73d43cf2440a82ea97e7f5f17ac9,
title = "Dryland hydrology in a warmer world: Lessons from the Last Glacial period",
abstract = "It has long been recognized that the tropics were drier and mid-latitude deserts wetter during the Last Glacial Maximum (LGM). Until now there has not been a single, unifying explanation for this pattern. Recently, Held and Soden [34] suggested that ongoing global warming will cause the Earth's drylands to become progressively drier and its tropics to become progressively wetter. Because no suitable {"}warm world{"} analogue is available in the paleoclimate record, the best available test of Held and Soden's proposal is to look at records from the last glacial period in which drylands should have been wetter and the tropics drier. Our survey of the recent paleolake literature confirms that closed basin lakes located in the poleward limits (∼40) of the drylands in both hemispheres were far larger during the Last Glacial Maximum and parts of the tropics appear to have been less wet. While these observations are consistent with Held's prediction, evidence from the sub-tropical drylands (15 to 25°) is more complex. As with high-latitude drylands, lakes in subtropical drylands of South America and probably the Kalahari Desert were larger than present during the LGM. By contrast, lakes in the sub-tropical Sahara and Arabian Deserts of the northern hemisphere were largest in the early Holocene, but also apparently larger than today in the early LGM. What paleolake records show are that 1) a strong hemispheric symmetry in lake response occurred during the LGM, 2) a difference in response occurred during the latest-glacial, and 3) lake expansions occurred in response to shifts in the thermal equator related to Heinrich Events and insolation variation as well as to colder temperatures.",
author = "Jay Quade and Broecker, {W. S.}",
year = "2009",
doi = "10.1140/epjst/e2009-01146-y",
language = "English (US)",
volume = "176",
pages = "21--36",
journal = "European Physical Journal: Special Topics",
issn = "1951-6355",
publisher = "Springer Verlag",
number = "1",

}

TY - JOUR

T1 - Dryland hydrology in a warmer world

T2 - Lessons from the Last Glacial period

AU - Quade, Jay

AU - Broecker, W. S.

PY - 2009

Y1 - 2009

N2 - It has long been recognized that the tropics were drier and mid-latitude deserts wetter during the Last Glacial Maximum (LGM). Until now there has not been a single, unifying explanation for this pattern. Recently, Held and Soden [34] suggested that ongoing global warming will cause the Earth's drylands to become progressively drier and its tropics to become progressively wetter. Because no suitable "warm world" analogue is available in the paleoclimate record, the best available test of Held and Soden's proposal is to look at records from the last glacial period in which drylands should have been wetter and the tropics drier. Our survey of the recent paleolake literature confirms that closed basin lakes located in the poleward limits (∼40) of the drylands in both hemispheres were far larger during the Last Glacial Maximum and parts of the tropics appear to have been less wet. While these observations are consistent with Held's prediction, evidence from the sub-tropical drylands (15 to 25°) is more complex. As with high-latitude drylands, lakes in subtropical drylands of South America and probably the Kalahari Desert were larger than present during the LGM. By contrast, lakes in the sub-tropical Sahara and Arabian Deserts of the northern hemisphere were largest in the early Holocene, but also apparently larger than today in the early LGM. What paleolake records show are that 1) a strong hemispheric symmetry in lake response occurred during the LGM, 2) a difference in response occurred during the latest-glacial, and 3) lake expansions occurred in response to shifts in the thermal equator related to Heinrich Events and insolation variation as well as to colder temperatures.

AB - It has long been recognized that the tropics were drier and mid-latitude deserts wetter during the Last Glacial Maximum (LGM). Until now there has not been a single, unifying explanation for this pattern. Recently, Held and Soden [34] suggested that ongoing global warming will cause the Earth's drylands to become progressively drier and its tropics to become progressively wetter. Because no suitable "warm world" analogue is available in the paleoclimate record, the best available test of Held and Soden's proposal is to look at records from the last glacial period in which drylands should have been wetter and the tropics drier. Our survey of the recent paleolake literature confirms that closed basin lakes located in the poleward limits (∼40) of the drylands in both hemispheres were far larger during the Last Glacial Maximum and parts of the tropics appear to have been less wet. While these observations are consistent with Held's prediction, evidence from the sub-tropical drylands (15 to 25°) is more complex. As with high-latitude drylands, lakes in subtropical drylands of South America and probably the Kalahari Desert were larger than present during the LGM. By contrast, lakes in the sub-tropical Sahara and Arabian Deserts of the northern hemisphere were largest in the early Holocene, but also apparently larger than today in the early LGM. What paleolake records show are that 1) a strong hemispheric symmetry in lake response occurred during the LGM, 2) a difference in response occurred during the latest-glacial, and 3) lake expansions occurred in response to shifts in the thermal equator related to Heinrich Events and insolation variation as well as to colder temperatures.

UR - http://www.scopus.com/inward/record.url?scp=70349294052&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349294052&partnerID=8YFLogxK

U2 - 10.1140/epjst/e2009-01146-y

DO - 10.1140/epjst/e2009-01146-y

M3 - Article

VL - 176

SP - 21

EP - 36

JO - European Physical Journal: Special Topics

JF - European Physical Journal: Special Topics

SN - 1951-6355

IS - 1

ER -