Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum

Randy Lloyd Bogan, Melinda J. Murphy, Jon D. Hennebold

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Luteolysis of the corpus luteum (CL) during nonfertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the pri mate CL are poorly defined. Therefore, a genomic approach was used to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected before [d 10-11 after LH surge, mid-late (ML) stage] or during (d 14-16, late stage) functional regression. Based on P4 levels, late-stage CL were subdivided into functional-late (serum P4 > 1.5 ng/ml) and functionally regressed late (FRL) (serum P4 < 0.5 ng/ml) groups (n = 4 CL per group). Total RNA was isolated, labeled, and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; P< 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL; 2) decreasing from ML through FRL; and 3) increasing ML to functional late, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in four of five differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.

Original languageEnglish (US)
Pages (from-to)1521-1529
Number of pages9
JournalEndocrinology
Volume150
Issue number3
DOIs
StatePublished - Mar 2009
Externally publishedYes

Fingerprint

Luteolysis
Corpus Luteum
Macaca mulatta
Gene Expression
Genes
Macaca
Serum
Primates
Progesterone
Real-Time Polymerase Chain Reaction
Western Blotting
Databases
Messenger RNA
Proteins

ASJC Scopus subject areas

  • Endocrinology

Cite this

Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum. / Bogan, Randy Lloyd; Murphy, Melinda J.; Hennebold, Jon D.

In: Endocrinology, Vol. 150, No. 3, 03.2009, p. 1521-1529.

Research output: Contribution to journalArticle

@article{f51742dbba874a918c9a19ed7f8d7dbb,
title = "Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum",
abstract = "Luteolysis of the corpus luteum (CL) during nonfertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the pri mate CL are poorly defined. Therefore, a genomic approach was used to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected before [d 10-11 after LH surge, mid-late (ML) stage] or during (d 14-16, late stage) functional regression. Based on P4 levels, late-stage CL were subdivided into functional-late (serum P4 > 1.5 ng/ml) and functionally regressed late (FRL) (serum P4 < 0.5 ng/ml) groups (n = 4 CL per group). Total RNA was isolated, labeled, and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; P< 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL; 2) decreasing from ML through FRL; and 3) increasing ML to functional late, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in four of five differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.",
author = "Bogan, {Randy Lloyd} and Murphy, {Melinda J.} and Hennebold, {Jon D.}",
year = "2009",
month = "3",
doi = "10.1210/en.2008-1201",
language = "English (US)",
volume = "150",
pages = "1521--1529",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "3",

}

TY - JOUR

T1 - Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum

AU - Bogan, Randy Lloyd

AU - Murphy, Melinda J.

AU - Hennebold, Jon D.

PY - 2009/3

Y1 - 2009/3

N2 - Luteolysis of the corpus luteum (CL) during nonfertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the pri mate CL are poorly defined. Therefore, a genomic approach was used to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected before [d 10-11 after LH surge, mid-late (ML) stage] or during (d 14-16, late stage) functional regression. Based on P4 levels, late-stage CL were subdivided into functional-late (serum P4 > 1.5 ng/ml) and functionally regressed late (FRL) (serum P4 < 0.5 ng/ml) groups (n = 4 CL per group). Total RNA was isolated, labeled, and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; P< 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL; 2) decreasing from ML through FRL; and 3) increasing ML to functional late, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in four of five differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.

AB - Luteolysis of the corpus luteum (CL) during nonfertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the pri mate CL are poorly defined. Therefore, a genomic approach was used to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected before [d 10-11 after LH surge, mid-late (ML) stage] or during (d 14-16, late stage) functional regression. Based on P4 levels, late-stage CL were subdivided into functional-late (serum P4 > 1.5 ng/ml) and functionally regressed late (FRL) (serum P4 < 0.5 ng/ml) groups (n = 4 CL per group). Total RNA was isolated, labeled, and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; P< 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL; 2) decreasing from ML through FRL; and 3) increasing ML to functional late, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in four of five differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.

UR - http://www.scopus.com/inward/record.url?scp=62749206688&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=62749206688&partnerID=8YFLogxK

U2 - 10.1210/en.2008-1201

DO - 10.1210/en.2008-1201

M3 - Article

VL - 150

SP - 1521

EP - 1529

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 3

ER -