Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast Terahertz pump-probe techniques

F. Blanchard, D. Golde, F. H. Su, L. Razzari, G. Sharma, R. Morandotti, T. Ozaki, M. Reid, M. Kira, Stephan W Koch, F. A. Hegmann

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

The anisotropic effective mass of energetic electrons in an isotropic, nonparabolic conduction band is revealed using ultrafast THz-pump-THz-probe techniques in a n-doped InGaAs semiconductor thin film. A microscopic theory is applied to identify the origin of the observed anisotropy and to show that the self-consistent light-matter coupling contributes significantly to the THz response.

Original languageEnglish (US)
Article number107401
JournalPhysical Review Letters
Volume107
Issue number10
DOIs
StatePublished - Aug 31 2011
Externally publishedYes

Fingerprint

hot electrons
conduction bands
pumps
anisotropy
probes
thin films
electrons

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast Terahertz pump-probe techniques. / Blanchard, F.; Golde, D.; Su, F. H.; Razzari, L.; Sharma, G.; Morandotti, R.; Ozaki, T.; Reid, M.; Kira, M.; Koch, Stephan W; Hegmann, F. A.

In: Physical Review Letters, Vol. 107, No. 10, 107401, 31.08.2011.

Research output: Contribution to journalArticle

Blanchard, F. ; Golde, D. ; Su, F. H. ; Razzari, L. ; Sharma, G. ; Morandotti, R. ; Ozaki, T. ; Reid, M. ; Kira, M. ; Koch, Stephan W ; Hegmann, F. A. / Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast Terahertz pump-probe techniques. In: Physical Review Letters. 2011 ; Vol. 107, No. 10.
@article{06c9048956f04218bce14a0b1258b26d,
title = "Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast Terahertz pump-probe techniques",
abstract = "The anisotropic effective mass of energetic electrons in an isotropic, nonparabolic conduction band is revealed using ultrafast THz-pump-THz-probe techniques in a n-doped InGaAs semiconductor thin film. A microscopic theory is applied to identify the origin of the observed anisotropy and to show that the self-consistent light-matter coupling contributes significantly to the THz response.",
author = "F. Blanchard and D. Golde and Su, {F. H.} and L. Razzari and G. Sharma and R. Morandotti and T. Ozaki and M. Reid and M. Kira and Koch, {Stephan W} and Hegmann, {F. A.}",
year = "2011",
month = "8",
day = "31",
doi = "10.1103/PhysRevLett.107.107401",
language = "English (US)",
volume = "107",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "10",

}

TY - JOUR

T1 - Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast Terahertz pump-probe techniques

AU - Blanchard, F.

AU - Golde, D.

AU - Su, F. H.

AU - Razzari, L.

AU - Sharma, G.

AU - Morandotti, R.

AU - Ozaki, T.

AU - Reid, M.

AU - Kira, M.

AU - Koch, Stephan W

AU - Hegmann, F. A.

PY - 2011/8/31

Y1 - 2011/8/31

N2 - The anisotropic effective mass of energetic electrons in an isotropic, nonparabolic conduction band is revealed using ultrafast THz-pump-THz-probe techniques in a n-doped InGaAs semiconductor thin film. A microscopic theory is applied to identify the origin of the observed anisotropy and to show that the self-consistent light-matter coupling contributes significantly to the THz response.

AB - The anisotropic effective mass of energetic electrons in an isotropic, nonparabolic conduction band is revealed using ultrafast THz-pump-THz-probe techniques in a n-doped InGaAs semiconductor thin film. A microscopic theory is applied to identify the origin of the observed anisotropy and to show that the self-consistent light-matter coupling contributes significantly to the THz response.

UR - http://www.scopus.com/inward/record.url?scp=80052276272&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80052276272&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.107.107401

DO - 10.1103/PhysRevLett.107.107401

M3 - Article

VL - 107

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 10

M1 - 107401

ER -