Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets

Xianyu Tan, Adam P. Showman

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle of silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east-west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.

Original languageEnglish (US)
Article number186
JournalAstrophysical Journal
Volume835
Issue number2
DOIs
StatePublished - Feb 1 2017

Keywords

  • brown dwarfs
  • hydrodynamics
  • methods: numerical
  • planets and satellites: atmospheres
  • planets and satellites: gaseous planets

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets'. Together they form a unique fingerprint.

Cite this