Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5)

Koichi Sakaguchi, Xubin Zeng

Research output: Contribution to journalArticle

78 Scopus citations

Abstract

The National Center for Atmospheric Research (NCAR) Community Land Model Version 3.5 (CLM3.5) has significantly improved the simulation of hydrologic cycles compared to its earlier version (CLM3.0) owing to a series of new and modified parameterizations for canopy and soil processes. One of the key elements is the addition of a soil resistance to effectively reduce soil evaporation (Es) and improve the partitioning of evapotranspiration. This soil resistance, however, is found to be physically inconsistent under wet soil conditions and implicitly include the effects of dead leaves. A new treatment with three components are proposed here: (1) two different approaches to better reflect the soil moisture limitation to Es, the so-called α and β methods combined and a new soil resistance; (2) anew surface resistance to explicitly represent the effect of plant litter cover on water vapor transfer; and (3) an explicit consideration of the effect of under-canopy atmospheric stability on the under-canopy turbulent resistance. The effects of each modification vary locally and seasonally, and their combination leads to regional differences between CLM3.5 and our new formulations. Our new formulations tend to have higher Es over high latitudes and similar or slightly higher Es in dry regions. A larger reduction of Es by the new formulations is also found over regions with relatively wet soil and more vegetation, in better agreement with previous ET partitioning studies.

Original languageEnglish (US)
Article numberD01107
JournalJournal of Geophysical Research Atmospheres
Volume114
Issue number1
DOIs
StatePublished - Jan 16 2009

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5)'. Together they form a unique fingerprint.

  • Cite this