TY - JOUR

T1 - Efficient representation of Gaussian states for multi-mode non-Gaussian quantum state engineering via subtraction of arbitrary number of photons

AU - Gagatsos, Christos N.

AU - Guha, Saikat

N1 - Publisher Copyright:
Copyright © 2019, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2019/2/4

Y1 - 2019/2/4

N2 - We introduce a complete description of a multi-mode bosonic quantum state in the coherent-state basis (which in this work is denoted as “K” function), which—up to a phase—is the square root of the well-known Husimi “Q” representation. We express the K function of any N-mode Gaussian state as a function of its covariance matrix and displacement vector, and also that of a general continuous-variable cluster state in terms of the modal squeezing and graph topology of the cluster. This formalism lets us characterize the non Gaussian state left over when one measures a subset of modes of a Gaussian state using photon number resolving detection, the fidelity of the obtained non-Gaussian state with any target state, and the associated heralding probability, all analytically. We show that this probability can be expressed as a Hafnian, re-interpreting the output state of a circuit claimed to demonstrate quantum supremacy termed Gaussian boson sampling. As an example-application of our formalism, we propose a method to prepare a two-mode coherent-cat-basis Bell state with fidelity close to unity and success probability that is fundamentally higher than that of a well-known scheme that splits an approximate single-mode cat state—obtained by photon number subtraction on a squeezed vacuum mode—on a balanced beam splitter. This formalism could enable exploration of efficient generation of cat-basis entangled states, which are known to be useful for quantum error correction against photon loss.

AB - We introduce a complete description of a multi-mode bosonic quantum state in the coherent-state basis (which in this work is denoted as “K” function), which—up to a phase—is the square root of the well-known Husimi “Q” representation. We express the K function of any N-mode Gaussian state as a function of its covariance matrix and displacement vector, and also that of a general continuous-variable cluster state in terms of the modal squeezing and graph topology of the cluster. This formalism lets us characterize the non Gaussian state left over when one measures a subset of modes of a Gaussian state using photon number resolving detection, the fidelity of the obtained non-Gaussian state with any target state, and the associated heralding probability, all analytically. We show that this probability can be expressed as a Hafnian, re-interpreting the output state of a circuit claimed to demonstrate quantum supremacy termed Gaussian boson sampling. As an example-application of our formalism, we propose a method to prepare a two-mode coherent-cat-basis Bell state with fidelity close to unity and success probability that is fundamentally higher than that of a well-known scheme that splits an approximate single-mode cat state—obtained by photon number subtraction on a squeezed vacuum mode—on a balanced beam splitter. This formalism could enable exploration of efficient generation of cat-basis entangled states, which are known to be useful for quantum error correction against photon loss.

UR - http://www.scopus.com/inward/record.url?scp=85093618722&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85093618722&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85093618722

JO - Nuclear Physics A

JF - Nuclear Physics A

SN - 0375-9474

ER -