Elastic net for channel estimation in massive MIMO

Ture Peken, Ravi Tandon, Tamal Bose

Research output: Contribution to journalConference article

1 Citation (Scopus)

Abstract

Next generation wireless systems will support higher data rates, improved spectral efficiency, and less latency. Massive multiple-input multiple-output (MIMO) is proposed to satisfy these demands. In massive MIMO, many benefits come from employing hundreds of antennas at the base station (BS) and serving dozens of user terminals (UTs) per cell. As the number of antennas increases at the BS, the channel becomes sparse. By exploiting sparse channel in massive MIMO, compressive sensing (CS) methods can be implemented to estimate the channel. In CS methods, the length of pilot sequences can be shortened compared to pilot- based methods. In this paper, a novel channel estimation algorithm based on a CS method called elastic net is proposed. Channel estimation accuracy of pilot-based, lasso, and elastic- net based methods in massive MIMO are compared. It is shown that the elastic-net based method gives the best performance in terms of error for the less pilot symbols and SNR values.

Original languageEnglish (US)
JournalProceedings of the International Telemetering Conference
StatePublished - Jan 1 2017

Fingerprint

MIMO (control systems)
Channel estimation
Base stations
Antennas
antennas
stations
support systems
estimates
cells

Keywords

  • Channel estimation
  • Compressive sensing
  • Elastic net
  • Massive MIMO

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Instrumentation
  • Computer Networks and Communications
  • Signal Processing

Cite this

Elastic net for channel estimation in massive MIMO. / Peken, Ture; Tandon, Ravi; Bose, Tamal.

In: Proceedings of the International Telemetering Conference, 01.01.2017.

Research output: Contribution to journalConference article

@article{9f3fcf10296b487ebe9bd40171a2241b,
title = "Elastic net for channel estimation in massive MIMO",
abstract = "Next generation wireless systems will support higher data rates, improved spectral efficiency, and less latency. Massive multiple-input multiple-output (MIMO) is proposed to satisfy these demands. In massive MIMO, many benefits come from employing hundreds of antennas at the base station (BS) and serving dozens of user terminals (UTs) per cell. As the number of antennas increases at the BS, the channel becomes sparse. By exploiting sparse channel in massive MIMO, compressive sensing (CS) methods can be implemented to estimate the channel. In CS methods, the length of pilot sequences can be shortened compared to pilot- based methods. In this paper, a novel channel estimation algorithm based on a CS method called elastic net is proposed. Channel estimation accuracy of pilot-based, lasso, and elastic- net based methods in massive MIMO are compared. It is shown that the elastic-net based method gives the best performance in terms of error for the less pilot symbols and SNR values.",
keywords = "Channel estimation, Compressive sensing, Elastic net, Massive MIMO",
author = "Ture Peken and Ravi Tandon and Tamal Bose",
year = "2017",
month = "1",
day = "1",
language = "English (US)",
journal = "Proceedings of the International Telemetering Conference",
issn = "0884-5123",

}

TY - JOUR

T1 - Elastic net for channel estimation in massive MIMO

AU - Peken, Ture

AU - Tandon, Ravi

AU - Bose, Tamal

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Next generation wireless systems will support higher data rates, improved spectral efficiency, and less latency. Massive multiple-input multiple-output (MIMO) is proposed to satisfy these demands. In massive MIMO, many benefits come from employing hundreds of antennas at the base station (BS) and serving dozens of user terminals (UTs) per cell. As the number of antennas increases at the BS, the channel becomes sparse. By exploiting sparse channel in massive MIMO, compressive sensing (CS) methods can be implemented to estimate the channel. In CS methods, the length of pilot sequences can be shortened compared to pilot- based methods. In this paper, a novel channel estimation algorithm based on a CS method called elastic net is proposed. Channel estimation accuracy of pilot-based, lasso, and elastic- net based methods in massive MIMO are compared. It is shown that the elastic-net based method gives the best performance in terms of error for the less pilot symbols and SNR values.

AB - Next generation wireless systems will support higher data rates, improved spectral efficiency, and less latency. Massive multiple-input multiple-output (MIMO) is proposed to satisfy these demands. In massive MIMO, many benefits come from employing hundreds of antennas at the base station (BS) and serving dozens of user terminals (UTs) per cell. As the number of antennas increases at the BS, the channel becomes sparse. By exploiting sparse channel in massive MIMO, compressive sensing (CS) methods can be implemented to estimate the channel. In CS methods, the length of pilot sequences can be shortened compared to pilot- based methods. In this paper, a novel channel estimation algorithm based on a CS method called elastic net is proposed. Channel estimation accuracy of pilot-based, lasso, and elastic- net based methods in massive MIMO are compared. It is shown that the elastic-net based method gives the best performance in terms of error for the less pilot symbols and SNR values.

KW - Channel estimation

KW - Compressive sensing

KW - Elastic net

KW - Massive MIMO

UR - http://www.scopus.com/inward/record.url?scp=85041491789&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041491789&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:85041491789

JO - Proceedings of the International Telemetering Conference

JF - Proceedings of the International Telemetering Conference

SN - 0884-5123

ER -