Elastic wave scattering by cracks and inclusions in plates: In-plane case

M. R. Karim, M. A. Awal, Tribikram Kundu

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

The scattering of elastic waves in a plate by a distribution of inclusions and/or cracks within a finite zone is studied by a combination of analytical and finite element methods. The incident field is generated by either a time harmonic beam of finite width or guided waves. A part of the plate containing the inclusions/cracks (interior region) is modeled by conventional finite elements. The far-field (exterior region) is approximated by a number of guided (Lamb) wave modes with real wave numbers. The scattered and total fields (displacements and stresses) are obtained by matching the two regions to satisfy the displacement and stress compatibilities at the near field-far field boundary. Numerical results are presented showing the effects of cracks and inclusions in a plate.

Original languageEnglish (US)
Pages (from-to)2355-2367
Number of pages13
JournalInternational Journal of Solids and Structures
Volume29
Issue number19
DOIs
StatePublished - 1992

Fingerprint

Wave Scattering
Elastic Waves
Elastic waves
wave scattering
elastic waves
Crack
elastic scattering
Guided Waves
Guided electromagnetic wave propagation
cracks
Inclusion
inclusions
Scattering
Cracks
Far Field
far fields
Lamb Waves
Lamb waves
Near-field
Surface waves

ASJC Scopus subject areas

  • Mechanical Engineering
  • Mechanics of Materials

Cite this

Elastic wave scattering by cracks and inclusions in plates : In-plane case. / Karim, M. R.; Awal, M. A.; Kundu, Tribikram.

In: International Journal of Solids and Structures, Vol. 29, No. 19, 1992, p. 2355-2367.

Research output: Contribution to journalArticle

@article{63af60194ad643cca162b652b554efb3,
title = "Elastic wave scattering by cracks and inclusions in plates: In-plane case",
abstract = "The scattering of elastic waves in a plate by a distribution of inclusions and/or cracks within a finite zone is studied by a combination of analytical and finite element methods. The incident field is generated by either a time harmonic beam of finite width or guided waves. A part of the plate containing the inclusions/cracks (interior region) is modeled by conventional finite elements. The far-field (exterior region) is approximated by a number of guided (Lamb) wave modes with real wave numbers. The scattered and total fields (displacements and stresses) are obtained by matching the two regions to satisfy the displacement and stress compatibilities at the near field-far field boundary. Numerical results are presented showing the effects of cracks and inclusions in a plate.",
author = "Karim, {M. R.} and Awal, {M. A.} and Tribikram Kundu",
year = "1992",
doi = "10.1016/0020-7683(92)90220-N",
language = "English (US)",
volume = "29",
pages = "2355--2367",
journal = "International Journal of Solids and Structures",
issn = "0020-7683",
publisher = "Elsevier Limited",
number = "19",

}

TY - JOUR

T1 - Elastic wave scattering by cracks and inclusions in plates

T2 - In-plane case

AU - Karim, M. R.

AU - Awal, M. A.

AU - Kundu, Tribikram

PY - 1992

Y1 - 1992

N2 - The scattering of elastic waves in a plate by a distribution of inclusions and/or cracks within a finite zone is studied by a combination of analytical and finite element methods. The incident field is generated by either a time harmonic beam of finite width or guided waves. A part of the plate containing the inclusions/cracks (interior region) is modeled by conventional finite elements. The far-field (exterior region) is approximated by a number of guided (Lamb) wave modes with real wave numbers. The scattered and total fields (displacements and stresses) are obtained by matching the two regions to satisfy the displacement and stress compatibilities at the near field-far field boundary. Numerical results are presented showing the effects of cracks and inclusions in a plate.

AB - The scattering of elastic waves in a plate by a distribution of inclusions and/or cracks within a finite zone is studied by a combination of analytical and finite element methods. The incident field is generated by either a time harmonic beam of finite width or guided waves. A part of the plate containing the inclusions/cracks (interior region) is modeled by conventional finite elements. The far-field (exterior region) is approximated by a number of guided (Lamb) wave modes with real wave numbers. The scattered and total fields (displacements and stresses) are obtained by matching the two regions to satisfy the displacement and stress compatibilities at the near field-far field boundary. Numerical results are presented showing the effects of cracks and inclusions in a plate.

UR - http://www.scopus.com/inward/record.url?scp=0026624286&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026624286&partnerID=8YFLogxK

U2 - 10.1016/0020-7683(92)90220-N

DO - 10.1016/0020-7683(92)90220-N

M3 - Article

AN - SCOPUS:0026624286

VL - 29

SP - 2355

EP - 2367

JO - International Journal of Solids and Structures

JF - International Journal of Solids and Structures

SN - 0020-7683

IS - 19

ER -