Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction

Yin Wang, Ana Vitória Botelho, Gary V. Martinez, Michael F Brown

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pKa for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6ω3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H3O+, in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H0) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the ∼ zero H0 from PS and the negative H0 due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.

Original languageEnglish (US)
Pages (from-to)7690-7701
Number of pages12
JournalJournal of the American Chemical Society
Volume124
Issue number26
DOIs
StatePublished - Jul 3 2002

Fingerprint

Phosphatidylserines
Membrane Lipids
Static Electricity
Rod Cell Outer Segment
Rhodopsin
Electrostatics
Phosphatidylcholines
Membranes
Ovum
Membrane Proteins
Lipid Bilayers
Lipids
Lipid bilayers
Proteins
Acid-Base Equilibrium
Docosahexaenoic Acids
Photolysis
Signal transduction
Thermodynamics
Signal Transduction

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. / Wang, Yin; Botelho, Ana Vitória; Martinez, Gary V.; Brown, Michael F.

In: Journal of the American Chemical Society, Vol. 124, No. 26, 03.07.2002, p. 7690-7701.

Research output: Contribution to journalArticle

@article{714cf3d0f71b4cba9d90d96fef203df2,
title = "Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction",
abstract = "Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pKa for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6ω3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H3O+, in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H0) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the ∼ zero H0 from PS and the negative H0 due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.",
author = "Yin Wang and Botelho, {Ana Vit{\'o}ria} and Martinez, {Gary V.} and Brown, {Michael F}",
year = "2002",
month = "7",
day = "3",
doi = "10.1021/ja0200488",
language = "English (US)",
volume = "124",
pages = "7690--7701",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "26",

}

TY - JOUR

T1 - Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction

AU - Wang, Yin

AU - Botelho, Ana Vitória

AU - Martinez, Gary V.

AU - Brown, Michael F

PY - 2002/7/3

Y1 - 2002/7/3

N2 - Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pKa for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6ω3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H3O+, in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H0) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the ∼ zero H0 from PS and the negative H0 due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.

AB - Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pKa for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6ω3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H3O+, in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H0) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the ∼ zero H0 from PS and the negative H0 due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.

UR - http://www.scopus.com/inward/record.url?scp=0037014696&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037014696&partnerID=8YFLogxK

U2 - 10.1021/ja0200488

DO - 10.1021/ja0200488

M3 - Article

C2 - 12083922

AN - SCOPUS:0037014696

VL - 124

SP - 7690

EP - 7701

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 26

ER -