Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus

Tony L. Sahley, Michael D. Hammonds, Frank E. Musiek

Research output: Contribution to journalReview article

16 Scopus citations

Abstract

Tinnitus is the phantom perception of sounds occurring in the absence of an external auditory stimulus. Tinnitus: [1] effects 50 million individuals, [2] often results from acoustic trauma and, [3] is very often exacerbated under stressful conditions. Tinnitus may result from lesions occurring at any location in the auditory system, but its mechanisms are poorly understood. Evidence is provided supporting an endogenous dynorphin-mediated potentiation of glutamate excitotoxicity at cochlear Type-I auditory dendrites that may well exacerbate chronic subjective neural-generated tinnitus during periods of heightened stress. The proposed mechanism is based on the following: [1] lateral efferent olivocochlear (LEOC) axon terminals contain endogenous dynorphin neuromodulators and are presynaptic to cochlear Type-I auditory dendrites that bear both κ-opioid and N-methyl-d-aspartate (NMDA) receptors/binding sites; [2] the release of presynaptic LEOC dynorphins is likely to be triggered by sympathetic stress via the locus coeruleus; [3] sodium salicylate induces an acute excitotoxicity by potentiating glutamate neurotransmitter effects at cochlear NMDA receptors, resulting in a Type-I auditory neural-generated tinnitus; [4] dynorphins participate in central NMDA-receptor-mediated excitotoxic inflammation; and [5] κ-opioid receptor ligands also modulate Type-I auditory neural activity by potentiating glutamate at cochlear NMDA receptors. A stress-activated release of dynorphins into the cochlea could potentiate the already excitotoxic effects of glutamate, producing: [1] hyperacusis, together with an acute exacerbation of [2] chronic aberrant Type-I neural activity and [3] a worsening of the activity-dependent central auditory neural plasticity changes that must certainly generate the perception of tinnitus. Treatment options are discussed.

Original languageEnglish (US)
Pages (from-to)80-108
Number of pages29
JournalBrain Research
Volume1499
DOIs
StatePublished - Mar 7 2013

Keywords

  • Dynorphins
  • Glutamate excitotoxicity
  • Lateral efferent olivocochlear (LEOC) system
  • NMDA receptors
  • Stress
  • Tinnitus

ASJC Scopus subject areas

  • Neuroscience(all)
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology

Fingerprint Dive into the research topics of 'Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus'. Together they form a unique fingerprint.

  • Cite this