Endothelium-independent relaxation of vascular smooth muscle by 17β- estradiol

Rayna J Gonzales, N. L. Kanagy

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Background: Estrogens directly dilate arteries, and this acute relaxation of vascular smooth muscle (VSM) may contribute to the cardioprotective effect of this important hormone. However, the mechanism by which estrogens relax VSM is not clear. Methods and Results: Based on observations in isolated smooth muscle cells, we hypothesized that 17β- estradiol (E2) causes dilation through receptor-mediated activation of K+ channels in VSM cells. To test this hypothesis, E2-relaxation was studied in arteries from male Sprague-Dawley rats. We observed that the estrogen receptor antagonist, tamoxifen (3 μmol) attenuated E2 relaxation, suggesting that at least a portion of the relaxation depends on activation of E2 receptors. The nitric oxide synthase inhibitor, Nω-nitro-L-arginine (100 μmol) did not affect E2 relaxation in either denuded or endothelium-intact arterial strips. Furthermore, inhibition of guanylyl cyclase with LY83583 (10 μmol) had no effect on the relaxation, suggesting that nitric oxide does not contribute to this relaxation. Vascular segments contracted with 90 mmol KCl to disrupt the K+ gradient had a similar E2 relaxation to segments contracted with phenylephrine (10-6 mol/L) indicating that E2 relaxation does not require K+-channel activation. Finally, E2 pretreatment inhibited contraction of arterial segments depleted of intracellular calcium but in the presence of extracellular calcium. However, E2 did not affect contraction of strips in calcium-free solution. Conclusions: These final experiments suggest that E2 inhibits Ca2+ influx but not intracellular calcium release. Together, these studies establish that E2 causes receptor-mediated relaxation of peripheral resistance arteries through inhibition of calcium entry independent of nitric oxide production, guanylyl cyclase stimulation, and K+-channel activation.

Original languageEnglish (US)
Pages (from-to)227-234
Number of pages8
JournalJournal of Cardiovascular Pharmacology and Therapeutics
Volume4
Issue number4
StatePublished - 1999
Externally publishedYes

Fingerprint

Vascular Smooth Muscle
Endothelium
Estradiol
Calcium
Arteries
Guanylate Cyclase
Smooth Muscle Myocytes
Nitric Oxide
Estrogens
6-anilino-5,8-quinolinedione
Phenylephrine
Tamoxifen
Nitric Oxide Synthase
Vascular Resistance
Blood Vessels
Sprague Dawley Rats
Arginine
Dilatation
Hormones

Keywords

  • Estrogen replacement
  • Estrogens
  • LNNA
  • LY83583
  • Nitric oxide
  • Tamoxifen

ASJC Scopus subject areas

  • Pharmacology
  • Cardiology and Cardiovascular Medicine

Cite this

Endothelium-independent relaxation of vascular smooth muscle by 17β- estradiol. / Gonzales, Rayna J; Kanagy, N. L.

In: Journal of Cardiovascular Pharmacology and Therapeutics, Vol. 4, No. 4, 1999, p. 227-234.

Research output: Contribution to journalArticle

@article{f29389979b094a9eb387c8eed954e1e8,
title = "Endothelium-independent relaxation of vascular smooth muscle by 17β- estradiol",
abstract = "Background: Estrogens directly dilate arteries, and this acute relaxation of vascular smooth muscle (VSM) may contribute to the cardioprotective effect of this important hormone. However, the mechanism by which estrogens relax VSM is not clear. Methods and Results: Based on observations in isolated smooth muscle cells, we hypothesized that 17β- estradiol (E2) causes dilation through receptor-mediated activation of K+ channels in VSM cells. To test this hypothesis, E2-relaxation was studied in arteries from male Sprague-Dawley rats. We observed that the estrogen receptor antagonist, tamoxifen (3 μmol) attenuated E2 relaxation, suggesting that at least a portion of the relaxation depends on activation of E2 receptors. The nitric oxide synthase inhibitor, Nω-nitro-L-arginine (100 μmol) did not affect E2 relaxation in either denuded or endothelium-intact arterial strips. Furthermore, inhibition of guanylyl cyclase with LY83583 (10 μmol) had no effect on the relaxation, suggesting that nitric oxide does not contribute to this relaxation. Vascular segments contracted with 90 mmol KCl to disrupt the K+ gradient had a similar E2 relaxation to segments contracted with phenylephrine (10-6 mol/L) indicating that E2 relaxation does not require K+-channel activation. Finally, E2 pretreatment inhibited contraction of arterial segments depleted of intracellular calcium but in the presence of extracellular calcium. However, E2 did not affect contraction of strips in calcium-free solution. Conclusions: These final experiments suggest that E2 inhibits Ca2+ influx but not intracellular calcium release. Together, these studies establish that E2 causes receptor-mediated relaxation of peripheral resistance arteries through inhibition of calcium entry independent of nitric oxide production, guanylyl cyclase stimulation, and K+-channel activation.",
keywords = "Estrogen replacement, Estrogens, LNNA, LY83583, Nitric oxide, Tamoxifen",
author = "Gonzales, {Rayna J} and Kanagy, {N. L.}",
year = "1999",
language = "English (US)",
volume = "4",
pages = "227--234",
journal = "Journal of Cardiovascular Pharmacology and Therapeutics",
issn = "1074-2484",
publisher = "SAGE Publications Ltd",
number = "4",

}

TY - JOUR

T1 - Endothelium-independent relaxation of vascular smooth muscle by 17β- estradiol

AU - Gonzales, Rayna J

AU - Kanagy, N. L.

PY - 1999

Y1 - 1999

N2 - Background: Estrogens directly dilate arteries, and this acute relaxation of vascular smooth muscle (VSM) may contribute to the cardioprotective effect of this important hormone. However, the mechanism by which estrogens relax VSM is not clear. Methods and Results: Based on observations in isolated smooth muscle cells, we hypothesized that 17β- estradiol (E2) causes dilation through receptor-mediated activation of K+ channels in VSM cells. To test this hypothesis, E2-relaxation was studied in arteries from male Sprague-Dawley rats. We observed that the estrogen receptor antagonist, tamoxifen (3 μmol) attenuated E2 relaxation, suggesting that at least a portion of the relaxation depends on activation of E2 receptors. The nitric oxide synthase inhibitor, Nω-nitro-L-arginine (100 μmol) did not affect E2 relaxation in either denuded or endothelium-intact arterial strips. Furthermore, inhibition of guanylyl cyclase with LY83583 (10 μmol) had no effect on the relaxation, suggesting that nitric oxide does not contribute to this relaxation. Vascular segments contracted with 90 mmol KCl to disrupt the K+ gradient had a similar E2 relaxation to segments contracted with phenylephrine (10-6 mol/L) indicating that E2 relaxation does not require K+-channel activation. Finally, E2 pretreatment inhibited contraction of arterial segments depleted of intracellular calcium but in the presence of extracellular calcium. However, E2 did not affect contraction of strips in calcium-free solution. Conclusions: These final experiments suggest that E2 inhibits Ca2+ influx but not intracellular calcium release. Together, these studies establish that E2 causes receptor-mediated relaxation of peripheral resistance arteries through inhibition of calcium entry independent of nitric oxide production, guanylyl cyclase stimulation, and K+-channel activation.

AB - Background: Estrogens directly dilate arteries, and this acute relaxation of vascular smooth muscle (VSM) may contribute to the cardioprotective effect of this important hormone. However, the mechanism by which estrogens relax VSM is not clear. Methods and Results: Based on observations in isolated smooth muscle cells, we hypothesized that 17β- estradiol (E2) causes dilation through receptor-mediated activation of K+ channels in VSM cells. To test this hypothesis, E2-relaxation was studied in arteries from male Sprague-Dawley rats. We observed that the estrogen receptor antagonist, tamoxifen (3 μmol) attenuated E2 relaxation, suggesting that at least a portion of the relaxation depends on activation of E2 receptors. The nitric oxide synthase inhibitor, Nω-nitro-L-arginine (100 μmol) did not affect E2 relaxation in either denuded or endothelium-intact arterial strips. Furthermore, inhibition of guanylyl cyclase with LY83583 (10 μmol) had no effect on the relaxation, suggesting that nitric oxide does not contribute to this relaxation. Vascular segments contracted with 90 mmol KCl to disrupt the K+ gradient had a similar E2 relaxation to segments contracted with phenylephrine (10-6 mol/L) indicating that E2 relaxation does not require K+-channel activation. Finally, E2 pretreatment inhibited contraction of arterial segments depleted of intracellular calcium but in the presence of extracellular calcium. However, E2 did not affect contraction of strips in calcium-free solution. Conclusions: These final experiments suggest that E2 inhibits Ca2+ influx but not intracellular calcium release. Together, these studies establish that E2 causes receptor-mediated relaxation of peripheral resistance arteries through inhibition of calcium entry independent of nitric oxide production, guanylyl cyclase stimulation, and K+-channel activation.

KW - Estrogen replacement

KW - Estrogens

KW - LNNA

KW - LY83583

KW - Nitric oxide

KW - Tamoxifen

UR - http://www.scopus.com/inward/record.url?scp=0032699447&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032699447&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032699447

VL - 4

SP - 227

EP - 234

JO - Journal of Cardiovascular Pharmacology and Therapeutics

JF - Journal of Cardiovascular Pharmacology and Therapeutics

SN - 1074-2484

IS - 4

ER -