Engineering approximations for activation energies in hydrogen transfer reactions

Paul Blowers, Rich Masel

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Previous investigators have often used the Polanyi relationship, extensions due to Seminov, or the BOC-MP/UBI-QEP relationship to estimate activation barriers in complex reaction networks. However, these relationships are not accurate for many reactions. In this article, a new engineering approximation for the estimate of activation barriers is presented. The approximation allows one to estimate barriers analytically, using known heats of reaction and one adjustable parameter, the intrinsic barrier. The equation was fit to the recommended values of activation energies for all 151 independent hydrogen transfer reactions in the NIST tables. All but nine of the reactions are fit within ± 4 kcal/mol. Of the nine failures, seven of the data points came from previous estimates, and may not be accurate. By comparison, Seminov's relationship fails for 47 of the reactions even though the Seminov relationship has three adjustable parameters compared to one in our approximation. The BOC-MP/UBI-QEP method gives errors of more than 10 kcal/mol for all 151 reactions and errors of more than 30 kcal/mol for many of the reactions. These results show that the new approximation is a significant improvement over the approximations that are currently in use.

Original languageEnglish (US)
Pages (from-to)2041-2052
Number of pages12
JournalAICHE Journal
Volume46
Issue number10
StatePublished - Oct 2000

Fingerprint

Hydrogen
Activation energy
Hot Temperature
Chemical activation
Research Personnel

ASJC Scopus subject areas

  • Biotechnology
  • Chemical Engineering(all)
  • Mechanical Engineering
  • Environmental Engineering
  • Polymers and Plastics

Cite this

Engineering approximations for activation energies in hydrogen transfer reactions. / Blowers, Paul; Masel, Rich.

In: AICHE Journal, Vol. 46, No. 10, 10.2000, p. 2041-2052.

Research output: Contribution to journalArticle

@article{e32787c7d17345d5917169b4ca6e63e1,
title = "Engineering approximations for activation energies in hydrogen transfer reactions",
abstract = "Previous investigators have often used the Polanyi relationship, extensions due to Seminov, or the BOC-MP/UBI-QEP relationship to estimate activation barriers in complex reaction networks. However, these relationships are not accurate for many reactions. In this article, a new engineering approximation for the estimate of activation barriers is presented. The approximation allows one to estimate barriers analytically, using known heats of reaction and one adjustable parameter, the intrinsic barrier. The equation was fit to the recommended values of activation energies for all 151 independent hydrogen transfer reactions in the NIST tables. All but nine of the reactions are fit within ± 4 kcal/mol. Of the nine failures, seven of the data points came from previous estimates, and may not be accurate. By comparison, Seminov's relationship fails for 47 of the reactions even though the Seminov relationship has three adjustable parameters compared to one in our approximation. The BOC-MP/UBI-QEP method gives errors of more than 10 kcal/mol for all 151 reactions and errors of more than 30 kcal/mol for many of the reactions. These results show that the new approximation is a significant improvement over the approximations that are currently in use.",
author = "Paul Blowers and Rich Masel",
year = "2000",
month = "10",
language = "English (US)",
volume = "46",
pages = "2041--2052",
journal = "AICHE Journal",
issn = "0001-1541",
publisher = "American Institute of Chemical Engineers",
number = "10",

}

TY - JOUR

T1 - Engineering approximations for activation energies in hydrogen transfer reactions

AU - Blowers, Paul

AU - Masel, Rich

PY - 2000/10

Y1 - 2000/10

N2 - Previous investigators have often used the Polanyi relationship, extensions due to Seminov, or the BOC-MP/UBI-QEP relationship to estimate activation barriers in complex reaction networks. However, these relationships are not accurate for many reactions. In this article, a new engineering approximation for the estimate of activation barriers is presented. The approximation allows one to estimate barriers analytically, using known heats of reaction and one adjustable parameter, the intrinsic barrier. The equation was fit to the recommended values of activation energies for all 151 independent hydrogen transfer reactions in the NIST tables. All but nine of the reactions are fit within ± 4 kcal/mol. Of the nine failures, seven of the data points came from previous estimates, and may not be accurate. By comparison, Seminov's relationship fails for 47 of the reactions even though the Seminov relationship has three adjustable parameters compared to one in our approximation. The BOC-MP/UBI-QEP method gives errors of more than 10 kcal/mol for all 151 reactions and errors of more than 30 kcal/mol for many of the reactions. These results show that the new approximation is a significant improvement over the approximations that are currently in use.

AB - Previous investigators have often used the Polanyi relationship, extensions due to Seminov, or the BOC-MP/UBI-QEP relationship to estimate activation barriers in complex reaction networks. However, these relationships are not accurate for many reactions. In this article, a new engineering approximation for the estimate of activation barriers is presented. The approximation allows one to estimate barriers analytically, using known heats of reaction and one adjustable parameter, the intrinsic barrier. The equation was fit to the recommended values of activation energies for all 151 independent hydrogen transfer reactions in the NIST tables. All but nine of the reactions are fit within ± 4 kcal/mol. Of the nine failures, seven of the data points came from previous estimates, and may not be accurate. By comparison, Seminov's relationship fails for 47 of the reactions even though the Seminov relationship has three adjustable parameters compared to one in our approximation. The BOC-MP/UBI-QEP method gives errors of more than 10 kcal/mol for all 151 reactions and errors of more than 30 kcal/mol for many of the reactions. These results show that the new approximation is a significant improvement over the approximations that are currently in use.

UR - http://www.scopus.com/inward/record.url?scp=0034306746&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034306746&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0034306746

VL - 46

SP - 2041

EP - 2052

JO - AICHE Journal

JF - AICHE Journal

SN - 0001-1541

IS - 10

ER -