Enhancement of the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, Robert A Norwood, Nasser N Peyghambarian, Khanh Q Kieu, S. Honkanen

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

We investigate the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition and show that the third-order optical nonlinearity can be enhanced by nanoscale engineering of the thin film structure. The grain size of the polycrystalline ZnO film is controlled by varying the thickness of the ZnO layers in the nanolaminate in which thin (∼2 nm) amorphous Al2O3 layers work as stopping layers for ZnO crystal growth. Nanoscale engineering enables us to achieve a third harmonic generated signal enhancement of ∼13 times from the optimized nanolaminate structure compared to a ZnO reference film of comparable thickness.

Original languageEnglish (US)
Article number031903
JournalApplied Physics Letters
Volume103
Issue number3
DOIs
StatePublished - Jul 15 2013

Fingerprint

atomic layer epitaxy
nonlinearity
augmentation
engineering
stopping
crystal growth
grain size
harmonics
thin films

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Karvonen, L., Säynätjoki, A., Chen, Y., Jussila, H., Rönn, J., Ruoho, M., ... Honkanen, S. (2013). Enhancement of the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition. Applied Physics Letters, 103(3), [031903]. https://doi.org/10.1063/1.4813557

Enhancement of the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition. / Karvonen, L.; Säynätjoki, A.; Chen, Y.; Jussila, H.; Rönn, J.; Ruoho, M.; Alasaarela, T.; Kujala, S.; Norwood, Robert A; Peyghambarian, Nasser N; Kieu, Khanh Q; Honkanen, S.

In: Applied Physics Letters, Vol. 103, No. 3, 031903, 15.07.2013.

Research output: Contribution to journalArticle

Karvonen, L, Säynätjoki, A, Chen, Y, Jussila, H, Rönn, J, Ruoho, M, Alasaarela, T, Kujala, S, Norwood, RA, Peyghambarian, NN, Kieu, KQ & Honkanen, S 2013, 'Enhancement of the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition', Applied Physics Letters, vol. 103, no. 3, 031903. https://doi.org/10.1063/1.4813557
Karvonen, L. ; Säynätjoki, A. ; Chen, Y. ; Jussila, H. ; Rönn, J. ; Ruoho, M. ; Alasaarela, T. ; Kujala, S. ; Norwood, Robert A ; Peyghambarian, Nasser N ; Kieu, Khanh Q ; Honkanen, S. / Enhancement of the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition. In: Applied Physics Letters. 2013 ; Vol. 103, No. 3.
@article{26b69c695fe04285a8b2bfdda917c6a8,
title = "Enhancement of the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition",
abstract = "We investigate the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition and show that the third-order optical nonlinearity can be enhanced by nanoscale engineering of the thin film structure. The grain size of the polycrystalline ZnO film is controlled by varying the thickness of the ZnO layers in the nanolaminate in which thin (∼2 nm) amorphous Al2O3 layers work as stopping layers for ZnO crystal growth. Nanoscale engineering enables us to achieve a third harmonic generated signal enhancement of ∼13 times from the optimized nanolaminate structure compared to a ZnO reference film of comparable thickness.",
author = "L. Karvonen and A. S{\"a}yn{\"a}tjoki and Y. Chen and H. Jussila and J. R{\"o}nn and M. Ruoho and T. Alasaarela and S. Kujala and Norwood, {Robert A} and Peyghambarian, {Nasser N} and Kieu, {Khanh Q} and S. Honkanen",
year = "2013",
month = "7",
day = "15",
doi = "10.1063/1.4813557",
language = "English (US)",
volume = "103",
journal = "Applied Physics Letters",
issn = "0003-6951",
publisher = "American Institute of Physics Publising LLC",
number = "3",

}

TY - JOUR

T1 - Enhancement of the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition

AU - Karvonen, L.

AU - Säynätjoki, A.

AU - Chen, Y.

AU - Jussila, H.

AU - Rönn, J.

AU - Ruoho, M.

AU - Alasaarela, T.

AU - Kujala, S.

AU - Norwood, Robert A

AU - Peyghambarian, Nasser N

AU - Kieu, Khanh Q

AU - Honkanen, S.

PY - 2013/7/15

Y1 - 2013/7/15

N2 - We investigate the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition and show that the third-order optical nonlinearity can be enhanced by nanoscale engineering of the thin film structure. The grain size of the polycrystalline ZnO film is controlled by varying the thickness of the ZnO layers in the nanolaminate in which thin (∼2 nm) amorphous Al2O3 layers work as stopping layers for ZnO crystal growth. Nanoscale engineering enables us to achieve a third harmonic generated signal enhancement of ∼13 times from the optimized nanolaminate structure compared to a ZnO reference film of comparable thickness.

AB - We investigate the third-order optical nonlinearity in ZnO/Al 2O3 nanolaminates fabricated by atomic layer deposition and show that the third-order optical nonlinearity can be enhanced by nanoscale engineering of the thin film structure. The grain size of the polycrystalline ZnO film is controlled by varying the thickness of the ZnO layers in the nanolaminate in which thin (∼2 nm) amorphous Al2O3 layers work as stopping layers for ZnO crystal growth. Nanoscale engineering enables us to achieve a third harmonic generated signal enhancement of ∼13 times from the optimized nanolaminate structure compared to a ZnO reference film of comparable thickness.

UR - http://www.scopus.com/inward/record.url?scp=84881531276&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84881531276&partnerID=8YFLogxK

U2 - 10.1063/1.4813557

DO - 10.1063/1.4813557

M3 - Article

AN - SCOPUS:84881531276

VL - 103

JO - Applied Physics Letters

JF - Applied Physics Letters

SN - 0003-6951

IS - 3

M1 - 031903

ER -