Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal

Research output: Contribution to journalArticle

206 Citations (Scopus)

Abstract

Sedimentologic, petrographic, and U-Pb detrital zircon ages from middle Eocene through early Miocene sedimentary rocks in the Lesser Himalayan zone of western and central Nepal indicate that a peripheral foreland basin system had developed in the eastern Himalayan collision zone by middle Eocene time. The shallow-marine, Eocene Bhainskati Formation accumulated in a back-bulge depozone between a southward migrating forebulge and the Indian craton. Migration of the forebulge through this region during Eocene-Oligocene time produced a regional unconformity that spans ~15-20 Myr. By early Miocene time, the forebulge unconformity was onlapped by the distal fringes of the southward migrating foredeep depozone, represented by fluvial deposits of the Dumri Formation. Continued southward migration of the foredeep during the Neogene accommodated the fluvial Siwalik Group. Light mineral provenance data and U-Pb detrital zircon ages suggest that the Bhainskati was derived partly from Tethyan sedimentary rocks of the Tibetan Himalayan zone during initial growth of the Himalayan fold-thrust belt. The Dumri was derived from metasedimentary and crystalline rocks of the Greater Himalayan zone during emplacement of the Main Central thrust and contemporaneous tectonic unroofing by normal faulting along the South Tibetan detachment system. The Lesser Himalayan crystalline thrust sheets were emplaced soon after deposition of the Dumri Formation. ~15-10 Ma. Paleocurrent and lithofacies data from the Dumri Formation indicate deposition by west-southwestward flowing rivers that drained into the Indus portion of the Himalayan foreland basin system during the early Miocene. Thick channel sandstones in the lower Dumri may represent the early Miocene counterpart of the modern Ganges River. Eastward diversion of the Ganges drainage system to near its present location had occurred by ~15 Ma, as the high-standing Aravalli Range on the northern Indian shield approached the front of the fold-thrust belt. Assuming reasonable values for the flexural rigidity of Indian lithosphere, the time span of the forebulge unconformity yields a velocity of ~14-33 mm/yr for the southward migration of the fold-thrust belt relative to India. This range of values is consistent with Neogene and present-day estimates and suggests that only one third to one half of India-Eurasia convergence has been accommodated by shortening in the Himalayan fold-thrust belt since the onset of collision.

Original languageEnglish (US)
Pages (from-to)741-765
Number of pages25
JournalTectonics
Volume17
Issue number5
StatePublished - 1998

Fingerprint

Nepal
foreland basin
basin evolution
thrust
Eocene
Miocene
histories
Sedimentary rocks
history
unconformity
fold
sedimentary rocks
Rivers
River diversion
forearc basin
Crystalline rocks
India
rivers
Faulting
Neogene

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

@article{e223eb37b9604cc3a4b15f011cc654e4,
title = "Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal",
abstract = "Sedimentologic, petrographic, and U-Pb detrital zircon ages from middle Eocene through early Miocene sedimentary rocks in the Lesser Himalayan zone of western and central Nepal indicate that a peripheral foreland basin system had developed in the eastern Himalayan collision zone by middle Eocene time. The shallow-marine, Eocene Bhainskati Formation accumulated in a back-bulge depozone between a southward migrating forebulge and the Indian craton. Migration of the forebulge through this region during Eocene-Oligocene time produced a regional unconformity that spans ~15-20 Myr. By early Miocene time, the forebulge unconformity was onlapped by the distal fringes of the southward migrating foredeep depozone, represented by fluvial deposits of the Dumri Formation. Continued southward migration of the foredeep during the Neogene accommodated the fluvial Siwalik Group. Light mineral provenance data and U-Pb detrital zircon ages suggest that the Bhainskati was derived partly from Tethyan sedimentary rocks of the Tibetan Himalayan zone during initial growth of the Himalayan fold-thrust belt. The Dumri was derived from metasedimentary and crystalline rocks of the Greater Himalayan zone during emplacement of the Main Central thrust and contemporaneous tectonic unroofing by normal faulting along the South Tibetan detachment system. The Lesser Himalayan crystalline thrust sheets were emplaced soon after deposition of the Dumri Formation. ~15-10 Ma. Paleocurrent and lithofacies data from the Dumri Formation indicate deposition by west-southwestward flowing rivers that drained into the Indus portion of the Himalayan foreland basin system during the early Miocene. Thick channel sandstones in the lower Dumri may represent the early Miocene counterpart of the modern Ganges River. Eastward diversion of the Ganges drainage system to near its present location had occurred by ~15 Ma, as the high-standing Aravalli Range on the northern Indian shield approached the front of the fold-thrust belt. Assuming reasonable values for the flexural rigidity of Indian lithosphere, the time span of the forebulge unconformity yields a velocity of ~14-33 mm/yr for the southward migration of the fold-thrust belt relative to India. This range of values is consistent with Neogene and present-day estimates and suggests that only one third to one half of India-Eurasia convergence has been accommodated by shortening in the Himalayan fold-thrust belt since the onset of collision.",
author = "Decelles, {Peter G} and Gehrels, {George E} and Jay Quade and Ojha, {T. P.}",
year = "1998",
language = "English (US)",
volume = "17",
pages = "741--765",
journal = "Tectonics",
issn = "0278-7407",
publisher = "American Geophysical Union",
number = "5",

}

TY - JOUR

T1 - Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal

AU - Decelles, Peter G

AU - Gehrels, George E

AU - Quade, Jay

AU - Ojha, T. P.

PY - 1998

Y1 - 1998

N2 - Sedimentologic, petrographic, and U-Pb detrital zircon ages from middle Eocene through early Miocene sedimentary rocks in the Lesser Himalayan zone of western and central Nepal indicate that a peripheral foreland basin system had developed in the eastern Himalayan collision zone by middle Eocene time. The shallow-marine, Eocene Bhainskati Formation accumulated in a back-bulge depozone between a southward migrating forebulge and the Indian craton. Migration of the forebulge through this region during Eocene-Oligocene time produced a regional unconformity that spans ~15-20 Myr. By early Miocene time, the forebulge unconformity was onlapped by the distal fringes of the southward migrating foredeep depozone, represented by fluvial deposits of the Dumri Formation. Continued southward migration of the foredeep during the Neogene accommodated the fluvial Siwalik Group. Light mineral provenance data and U-Pb detrital zircon ages suggest that the Bhainskati was derived partly from Tethyan sedimentary rocks of the Tibetan Himalayan zone during initial growth of the Himalayan fold-thrust belt. The Dumri was derived from metasedimentary and crystalline rocks of the Greater Himalayan zone during emplacement of the Main Central thrust and contemporaneous tectonic unroofing by normal faulting along the South Tibetan detachment system. The Lesser Himalayan crystalline thrust sheets were emplaced soon after deposition of the Dumri Formation. ~15-10 Ma. Paleocurrent and lithofacies data from the Dumri Formation indicate deposition by west-southwestward flowing rivers that drained into the Indus portion of the Himalayan foreland basin system during the early Miocene. Thick channel sandstones in the lower Dumri may represent the early Miocene counterpart of the modern Ganges River. Eastward diversion of the Ganges drainage system to near its present location had occurred by ~15 Ma, as the high-standing Aravalli Range on the northern Indian shield approached the front of the fold-thrust belt. Assuming reasonable values for the flexural rigidity of Indian lithosphere, the time span of the forebulge unconformity yields a velocity of ~14-33 mm/yr for the southward migration of the fold-thrust belt relative to India. This range of values is consistent with Neogene and present-day estimates and suggests that only one third to one half of India-Eurasia convergence has been accommodated by shortening in the Himalayan fold-thrust belt since the onset of collision.

AB - Sedimentologic, petrographic, and U-Pb detrital zircon ages from middle Eocene through early Miocene sedimentary rocks in the Lesser Himalayan zone of western and central Nepal indicate that a peripheral foreland basin system had developed in the eastern Himalayan collision zone by middle Eocene time. The shallow-marine, Eocene Bhainskati Formation accumulated in a back-bulge depozone between a southward migrating forebulge and the Indian craton. Migration of the forebulge through this region during Eocene-Oligocene time produced a regional unconformity that spans ~15-20 Myr. By early Miocene time, the forebulge unconformity was onlapped by the distal fringes of the southward migrating foredeep depozone, represented by fluvial deposits of the Dumri Formation. Continued southward migration of the foredeep during the Neogene accommodated the fluvial Siwalik Group. Light mineral provenance data and U-Pb detrital zircon ages suggest that the Bhainskati was derived partly from Tethyan sedimentary rocks of the Tibetan Himalayan zone during initial growth of the Himalayan fold-thrust belt. The Dumri was derived from metasedimentary and crystalline rocks of the Greater Himalayan zone during emplacement of the Main Central thrust and contemporaneous tectonic unroofing by normal faulting along the South Tibetan detachment system. The Lesser Himalayan crystalline thrust sheets were emplaced soon after deposition of the Dumri Formation. ~15-10 Ma. Paleocurrent and lithofacies data from the Dumri Formation indicate deposition by west-southwestward flowing rivers that drained into the Indus portion of the Himalayan foreland basin system during the early Miocene. Thick channel sandstones in the lower Dumri may represent the early Miocene counterpart of the modern Ganges River. Eastward diversion of the Ganges drainage system to near its present location had occurred by ~15 Ma, as the high-standing Aravalli Range on the northern Indian shield approached the front of the fold-thrust belt. Assuming reasonable values for the flexural rigidity of Indian lithosphere, the time span of the forebulge unconformity yields a velocity of ~14-33 mm/yr for the southward migration of the fold-thrust belt relative to India. This range of values is consistent with Neogene and present-day estimates and suggests that only one third to one half of India-Eurasia convergence has been accommodated by shortening in the Himalayan fold-thrust belt since the onset of collision.

UR - http://www.scopus.com/inward/record.url?scp=0032447680&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032447680&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032447680

VL - 17

SP - 741

EP - 765

JO - Tectonics

JF - Tectonics

SN - 0278-7407

IS - 5

ER -