TY - JOUR

T1 - Estimation of aquifer lower layer hydraulic conductivity values through base flow hydrograph rising limb analysis

AU - Pauwels, Valentijn R.N.

AU - Troch, Peter A.

PY - 2010/3

Y1 - 2010/3

N2 - The estimation of catchment-averaged aquifer hydraulic conductivity values is usually performed through a base flow recession analysis. Relationships between the first time derivatives of the base flow and the base flow values themselves, derived for small and large values of time, are used for this purpose. However, in the derivation of the short-time equations, an initially fully saturated aquifer without recharge with sudden drawdown is assumed, which occurs very rarely in reality. It is demonstrated that this approach leads to a nonnegligible error in the parameter estimates. A new relationship is derived, valid for the rising limb of a base flow hydrograph, succeeding a long rainless period. Application of this equation leads to accurate estimates of the aquifer lower layer saturated hydraulic conductivity. Further, it has been shown analytically that, if base flow is modeled using the linearized Boussinesq equation, the base flow depends on the effective aquifer depth and the ratio of the saturated hydraulic conductivity to the drainable porosity, not on these three parameters separately. The results of the new short-time expression are consistent with this finding, as opposed to the use of a traditional base flow recession analysis. When base flow is modeled using the nonlinear Boussinesq equation, the new expression can be used, without a second equation for large values of time, to estimate the aquifer lower layer hydraulic conductivity. Overall, the results in this paper suggest that the new methodology outperforms a traditional recession analysis for the estimation of catchment-averaged aquifer hydraulic conductivities.

AB - The estimation of catchment-averaged aquifer hydraulic conductivity values is usually performed through a base flow recession analysis. Relationships between the first time derivatives of the base flow and the base flow values themselves, derived for small and large values of time, are used for this purpose. However, in the derivation of the short-time equations, an initially fully saturated aquifer without recharge with sudden drawdown is assumed, which occurs very rarely in reality. It is demonstrated that this approach leads to a nonnegligible error in the parameter estimates. A new relationship is derived, valid for the rising limb of a base flow hydrograph, succeeding a long rainless period. Application of this equation leads to accurate estimates of the aquifer lower layer saturated hydraulic conductivity. Further, it has been shown analytically that, if base flow is modeled using the linearized Boussinesq equation, the base flow depends on the effective aquifer depth and the ratio of the saturated hydraulic conductivity to the drainable porosity, not on these three parameters separately. The results of the new short-time expression are consistent with this finding, as opposed to the use of a traditional base flow recession analysis. When base flow is modeled using the nonlinear Boussinesq equation, the new expression can be used, without a second equation for large values of time, to estimate the aquifer lower layer hydraulic conductivity. Overall, the results in this paper suggest that the new methodology outperforms a traditional recession analysis for the estimation of catchment-averaged aquifer hydraulic conductivities.

UR - http://www.scopus.com/inward/record.url?scp=77949586542&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77949586542&partnerID=8YFLogxK

U2 - 10.1029/2009WR008255

DO - 10.1029/2009WR008255

M3 - Article

AN - SCOPUS:77949586542

VL - 46

JO - Water Resources Research

JF - Water Resources Research

SN - 0043-1397

IS - 3

M1 - W03501

ER -