Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element in the 5′ untranslated region

Ryoko Hiroi, Robert J Handa

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

In the dorsal raphe nucleus, 17β-estradiol (E2) increases the expression of the brain-specific, rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase-2 (Tph2). Although estrogen receptor beta (ERβ) has been localized to Tph2 neurons, little is known about the transcriptional regulation of the Tph2 gene by estrogen. Since the ERβ agonist, diarylpropionitrile (DPN) also increases Tph2 expression, we tested the hypothesis that E2 regulates the Tph2 promoter through direct interactions with ERβ. A serotonergic cell line, B14, which endogenously expresses ERβ was transiently transfected with a fragment of the human TPH2 5′-untranslated region (5′-UTR) cloned into a luciferase reporter vector (TPH2-luc). Treatment with E2 or DPN caused a dose-dependent increase of TPH2-luc activity. In contrast, E2 conjugated to bovine serum albumin, which is cell membrane impermeable, had no effect on TPH2-luc activity. An estrogen receptor (ER) antagonist blocked E2 or DPN-induced TPH2-luc activity suggesting a classical ER mechanism. In silico analysis revealed an estrogen-response element (ERE) half-site located within the TPH2 5′-UTR. Deletion and site-directed mutation of this site abolished ligand-induced TPH2-luc activity. These results support the concept that there is a direct and functional interaction between E2:ERβ and the ERE half-site of the TPH2 promoter to regulate Tph2 expression. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription.

Original languageEnglish (US)
Pages (from-to)487-495
Number of pages9
JournalJournal of Neurochemistry
Volume127
Issue number4
DOIs
StatePublished - Nov 2013

Fingerprint

Estrogen Receptor beta
5' Untranslated Regions
Response Elements
Estrogen Receptors
Estrogens
Transcription
Tryptophan Hydroxylase
Estradiol
Estradiol Receptors
Sequence Deletion
Ligands
human TPH2 protein
Membranes
Biosynthesis
Cell membranes
Bovine Serum Albumin
Luciferases
Computer Simulation
Neurons
Brain

Keywords

  • diarylpropionitrile
  • estradiol
  • estrogen receptor beta
  • estrogen response element
  • luciferase reporter
  • serotonin

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Cite this

@article{09309bd53bfc4f5c9d46c7e0dcf7e883,
title = "Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element in the 5′ untranslated region",
abstract = "In the dorsal raphe nucleus, 17β-estradiol (E2) increases the expression of the brain-specific, rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase-2 (Tph2). Although estrogen receptor beta (ERβ) has been localized to Tph2 neurons, little is known about the transcriptional regulation of the Tph2 gene by estrogen. Since the ERβ agonist, diarylpropionitrile (DPN) also increases Tph2 expression, we tested the hypothesis that E2 regulates the Tph2 promoter through direct interactions with ERβ. A serotonergic cell line, B14, which endogenously expresses ERβ was transiently transfected with a fragment of the human TPH2 5′-untranslated region (5′-UTR) cloned into a luciferase reporter vector (TPH2-luc). Treatment with E2 or DPN caused a dose-dependent increase of TPH2-luc activity. In contrast, E2 conjugated to bovine serum albumin, which is cell membrane impermeable, had no effect on TPH2-luc activity. An estrogen receptor (ER) antagonist blocked E2 or DPN-induced TPH2-luc activity suggesting a classical ER mechanism. In silico analysis revealed an estrogen-response element (ERE) half-site located within the TPH2 5′-UTR. Deletion and site-directed mutation of this site abolished ligand-induced TPH2-luc activity. These results support the concept that there is a direct and functional interaction between E2:ERβ and the ERE half-site of the TPH2 promoter to regulate Tph2 expression. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription.",
keywords = "diarylpropionitrile, estradiol, estrogen receptor beta, estrogen response element, luciferase reporter, serotonin",
author = "Ryoko Hiroi and Handa, {Robert J}",
year = "2013",
month = "11",
doi = "10.1111/jnc.12401",
language = "English (US)",
volume = "127",
pages = "487--495",
journal = "Journal of Neurochemistry",
issn = "0022-3042",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element in the 5′ untranslated region

AU - Hiroi, Ryoko

AU - Handa, Robert J

PY - 2013/11

Y1 - 2013/11

N2 - In the dorsal raphe nucleus, 17β-estradiol (E2) increases the expression of the brain-specific, rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase-2 (Tph2). Although estrogen receptor beta (ERβ) has been localized to Tph2 neurons, little is known about the transcriptional regulation of the Tph2 gene by estrogen. Since the ERβ agonist, diarylpropionitrile (DPN) also increases Tph2 expression, we tested the hypothesis that E2 regulates the Tph2 promoter through direct interactions with ERβ. A serotonergic cell line, B14, which endogenously expresses ERβ was transiently transfected with a fragment of the human TPH2 5′-untranslated region (5′-UTR) cloned into a luciferase reporter vector (TPH2-luc). Treatment with E2 or DPN caused a dose-dependent increase of TPH2-luc activity. In contrast, E2 conjugated to bovine serum albumin, which is cell membrane impermeable, had no effect on TPH2-luc activity. An estrogen receptor (ER) antagonist blocked E2 or DPN-induced TPH2-luc activity suggesting a classical ER mechanism. In silico analysis revealed an estrogen-response element (ERE) half-site located within the TPH2 5′-UTR. Deletion and site-directed mutation of this site abolished ligand-induced TPH2-luc activity. These results support the concept that there is a direct and functional interaction between E2:ERβ and the ERE half-site of the TPH2 promoter to regulate Tph2 expression. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription.

AB - In the dorsal raphe nucleus, 17β-estradiol (E2) increases the expression of the brain-specific, rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase-2 (Tph2). Although estrogen receptor beta (ERβ) has been localized to Tph2 neurons, little is known about the transcriptional regulation of the Tph2 gene by estrogen. Since the ERβ agonist, diarylpropionitrile (DPN) also increases Tph2 expression, we tested the hypothesis that E2 regulates the Tph2 promoter through direct interactions with ERβ. A serotonergic cell line, B14, which endogenously expresses ERβ was transiently transfected with a fragment of the human TPH2 5′-untranslated region (5′-UTR) cloned into a luciferase reporter vector (TPH2-luc). Treatment with E2 or DPN caused a dose-dependent increase of TPH2-luc activity. In contrast, E2 conjugated to bovine serum albumin, which is cell membrane impermeable, had no effect on TPH2-luc activity. An estrogen receptor (ER) antagonist blocked E2 or DPN-induced TPH2-luc activity suggesting a classical ER mechanism. In silico analysis revealed an estrogen-response element (ERE) half-site located within the TPH2 5′-UTR. Deletion and site-directed mutation of this site abolished ligand-induced TPH2-luc activity. These results support the concept that there is a direct and functional interaction between E2:ERβ and the ERE half-site of the TPH2 promoter to regulate Tph2 expression. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription. We illustrate a direct regulation of the TPH2 transcription by estradiol and ERβ via a newly identified ERE half-site within the TPH2 promoter: (i) Estradiol- or an ERβ agonist-induced TPH2 transcription was blocked by an ER antagonist, while (ii) membrane impermeable form of estradiol did not induce transcription. (iii) Deletion or mutation of the ERE half-site abolished ligand-induced TPH2 transcription.

KW - diarylpropionitrile

KW - estradiol

KW - estrogen receptor beta

KW - estrogen response element

KW - luciferase reporter

KW - serotonin

UR - http://www.scopus.com/inward/record.url?scp=84887033750&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84887033750&partnerID=8YFLogxK

U2 - 10.1111/jnc.12401

DO - 10.1111/jnc.12401

M3 - Article

C2 - 24033289

AN - SCOPUS:84887033750

VL - 127

SP - 487

EP - 495

JO - Journal of Neurochemistry

JF - Journal of Neurochemistry

SN - 0022-3042

IS - 4

ER -