Evaluation of electro-spun tubular scaffolds to create an anastomosis using the cam assay

Adam Orendain, Jose Carrasco, Eniko T. Enikov, Gholam Peyman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Central retinal vein occlusion (CRVO) is a vascular disease characterized by thrombosis of the retinal veins that can eventually lead to ischemia. Ischemic CRVO can then cause macular degeneration and neovascular glaucoma causing partial to full blindness. In this study, we determined the feasibility of electrospinning tubular scaffolds for treating CRVO and vascular disease. Electrospinning was utilized to produce customizable scaffolds from nano-bers using collagen type I. Scaffolds were treated with glutaraldehyde, glycine, ethanol, UV light, and combinations of the treatments for the purpose cross-linking and to study their angiogenic effects. Structural properties of the scaffolds were analyzed with scanning electron micrsoscopy (SEM). Scaffolds were immobilized with human recombinant vascular endothelial growth factor (rhVEGF165) to investigate the drugdelivering abilities of the electrospun materials and as a method to produce vascularization. The chick chorioallantoic membrane (CAM) assay was used to examine the effects of VEGF immobilizations and to evaluate the feasibility of creating an anastomosis to treat CRVO. Collagen onplants (non-electrospun) and electrospun implants were made on day 10 of embryonic development. Findings show collagen loaded with rhVEGF165 had improved vasculature and pro-angiogenic properties. The present study suggests that collagen can immobilize and release growth factor, be electrospun to mimic the ultrastructure of native blood vessels, and holds promise for vascular tissue engineering.

Original languageEnglish (US)
Title of host publicationBiomedical and Biotechnology Engineering
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791856222
DOIs
StatePublished - Jan 1 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: Nov 15 2013Nov 21 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume3 B

Other

OtherASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
CountryUnited States
CitySan Diego, CA
Period11/15/1311/21/13

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Evaluation of electro-spun tubular scaffolds to create an anastomosis using the cam assay'. Together they form a unique fingerprint.

  • Cite this

    Orendain, A., Carrasco, J., Enikov, E. T., & Peyman, G. (2013). Evaluation of electro-spun tubular scaffolds to create an anastomosis using the cam assay. In Biomedical and Biotechnology Engineering (ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE); Vol. 3 B). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/IMECE2013-64687