Evolutionarily stable age at first reproduction in a density-dependent model

Régis Ferrière, Jean Clobert

Research output: Contribution to journalArticle

23 Scopus citations

Abstract

We develop a new model of life history evolution to investigate the evolution of age at first reproduction. Density dependence is taken into account. For a given "species", age of maturity, offspring survival, immature survival, adult survival, fecundity, immature age-classes entering in competition with adults and immature competitive ability are traits adjustable by natural selection, and constitute a particular strategy. On the contrary, the type of intraspecific competition (scramble or contest), strength of competition and inherent net reproductive rate Rinh0 are fixed (specific) characteristics. As a consequence of fixing Rinh0, the evolution of any trait will affect trade-offs between others. Evolutionarily stable strategies are determined numerically by using the mathematical concept of Lyapunov exponents. Altogether, we consider 960 different hypothetical "species" (i.e. different combinations of fixed traits). Corresponding ESSs are analyzed with respect to their age at first reproduction, adult survival and immature competitive ability components. They appear to be gathered in three groups. One is intuitive and characterized by a reduction of immature competitive ability and a correlation of age of maturity with adult survival; populations reach mainly equilibria. The two other groups respectively include "species" with low age of maturity but high adult survival, and "species" close to semelparity with delayed maturity; immature competitive ability may not be minimized, and populations possibly exhibit complex dynamics. In conclusion, the hypothesis that the evolution of a demographic parameter modifies trade-offs between others turns out to have important consequences. We argue that life history theory cannot ignore the source and mode-of-operation of density dependence and must regard potential short-term instability as essential.

Original languageEnglish (US)
Pages (from-to)253-267
Number of pages15
JournalJournal of Theoretical Biology
Volume157
Issue number2
DOIs
StatePublished - Jul 21 1992
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Statistics and Probability
  • Modeling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Cite this