Evolutionary dynamics of cryptocurrency transaction networks: An empirical study

Jiaqi Liang, Linjing Li, Daniel Zeng

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Cryptocurrency is a well-developed blockchain technology application that is currently a heated topic throughout the world. The public availability of transaction histories offers an opportunity to analyze and compare different cryptocurrencies. In this paper, we present a dynamic network analysis of three representative blockchain-based cryptocurrencies: Bitcoin, Ethereum, and Namecoin. By analyzing the accumulated network growth, we find that, unlike most other networks, these cryptocurrency networks do not always densify over time, and they are changing all the time with relatively low node and edge repetition ratios. Therefore, we then construct separate networks on a monthly basis, trace the changes of typical network characteristics (including degree distribution, degree assortativity, clustering coefficient, and the largest connected component) over time, and compare the three. We find that the degree distribution of these monthly transaction networks cannot be well fitted by the famous power-law distribution, at the same time, different currency still has different network properties, e.g., both Bitcoin and Ethereum networks are heavy-tailed with disassortative mixing, however, only the former can be treated as a small world. These network properties reflect the evolutionary characteristics and competitive power of these three cryptocurrencies and provide a foundation for future research.

Original languageEnglish (US)
Article numbere0202202
JournalPloS one
Volume13
Issue number8
DOIs
StatePublished - Jul 1 2019

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Evolutionary dynamics of cryptocurrency transaction networks: An empirical study'. Together they form a unique fingerprint.

Cite this