Ex situ Stöeber silica-Nafion® nanocomposite membranes

Beatrice Muriithi, Douglas A. Loy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

High temperature (100-200 °C) operation of fuel cells alleviates CO poisoning of the electrocatalysts and thermal-management problems associated with current proton exchange membrane (PEM) fuel cell technology. Perfluorosulfonic acid-based membranes have high proton conductivity below 80 °C, but at higher temperatures conductivity and fuel cell performance rapidly dwindle. Incorporation of inorganic fillers into the PEM has been shown to increase its working temperature range and improve its mechanical properties. These include composite materials prepared by in-situ polymerization of tetraalkoxysilanes in Nafion®. However, these studies did not examine the effects of particle size and the surface chemistry of the silica on processing and composite properties. In this work, we prepared and characterized a family of nanocomposites of Nafion® with monodisperse silica spheres with varied particle size and surface chemistry. Silica particles with controlled sizes (20-200 nm diameter) were prepared from tetraethoxysilane by the Stöeber method. Surface modification with mercaptopropyltriethoxysilane afforded hydrophobic thiol-modified silica that, upon oxidation with hydrogen peroxide, were converted into hydrophilic, sulfonic acid modified particles. We were successful in developing procedures for homogeneously dispersing the particles in Nafion® to make 80-100μm thick nanocomposite membranes. Atomic force microscopy and scanning electron microscopy were used to determine the distribution of the silica particles in the membranes and how it is affected by their size and surface chemistry. The results of our morphological studies and the influence of the size and chemical modification of the well-defined silica particles on the properties of the composite membranes, such as water uptake and proton conductivity at high temperatures, will be presented.

Original languageEnglish (US)
Title of host publicationAmerican Chemical Society - 238th National Meeting and Exposition, ACS 2009, Abstracts of Scientific Papers
StatePublished - Dec 1 2009
Event238th National Meeting and Exposition of the American Chemical Society, ACS 2009 - Washington, DC, United States
Duration: Aug 16 2009Aug 20 2009

Publication series

NameACS National Meeting Book of Abstracts
ISSN (Print)0065-7727

Other

Other238th National Meeting and Exposition of the American Chemical Society, ACS 2009
CountryUnited States
CityWashington, DC
Period8/16/098/20/09

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Ex situ Stöeber silica-Nafion® nanocomposite membranes'. Together they form a unique fingerprint.

  • Cite this

    Muriithi, B., & Loy, D. A. (2009). Ex situ Stöeber silica-Nafion® nanocomposite membranes. In American Chemical Society - 238th National Meeting and Exposition, ACS 2009, Abstracts of Scientific Papers (ACS National Meeting Book of Abstracts).