Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis

Zhixi Tian, Yanjun Yu, Feng Lin, Yeisoo Yu, Phillip J. SanMiguel, Rod A Wing, Susan R. McCouch, Jianxin Ma, Scott A. Jackson

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Background: Extensive DNA rearrangement of genic colinearity, as revealed by comparison of orthologous genomic regions, has been shown to be a general concept describing evolutionary dynamics of plant genomes. However, the nature, timing, lineages and adaptation of local genomic rearrangement in closely related species (e.g., within a genus) and haplotype variation of genomic rearrangement within populations have not been well documented.Results: We previously identified a hotspot for genic rearrangement and transposon accumulation in the Orp region of Asian rice (Oryza sativa, AA) by comparison with its orthologous region in sorghum. Here, we report the comparative analysis of this region with its orthologous regions in the wild progenitor species (O. nivara, AA) of Asian rice and African rice (O. glaberrima) using the BB genome Oryza species (O. punctata) as an outgroup, and investigation of transposon insertion sites and a segmental inversion event in the AA genomes at the population level. We found that Orp region was primarily and recently expanded in the Asian rice species O. sativa and O. nivara. LTR-retrotransposons shared by the three AA-genomic regions have been fixed in all the 94 varieties that represent different populations of the AA-genome species/subspecies, indicating their adaptive role in genome differentiation. However, LTR-retrotransposons unique to either O. nivara or O. sativa regions exhibited dramatic haplotype variation regarding their presence or absence between or within populations/subpopulations.Conclusions: The LTR-retrotransposon insertion hotspot in the Orp region was formed recently, independently and concurrently in different AA-genome species, and that the genic rearrangements detected in different species appear to be differentially triggered by transposable elements. This region is located near the end of the short arm of chromosome 8 and contains a high proportion of LTR-retrotransposons similar to observed in the centromeric region of this same chromosome, and thus may represent a genomic region that has recently switched from euchromatic to heterochromatic states. The haplotype variation of LTR-retrotransposon insertions within this region reveals substantial admixture among various subpopulations as established by molecular markers at the whole genome level, and can be used to develop retrotransposon junction markers for simple and rapid classification of O. sativa germplasm.

Original languageEnglish (US)
Article number142
JournalBMC Genomics
Volume12
DOIs
StatePublished - Mar 8 2011

Fingerprint

Retroelements
Genome
Population
Haplotypes
Plant Genome
Oryza
Chromosomes, Human, Pair 8
DNA Transposable Elements
Sorghum
Gene Rearrangement
Chromosomes

ASJC Scopus subject areas

  • Biotechnology
  • Genetics

Cite this

Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis. / Tian, Zhixi; Yu, Yanjun; Lin, Feng; Yu, Yeisoo; SanMiguel, Phillip J.; Wing, Rod A; McCouch, Susan R.; Ma, Jianxin; Jackson, Scott A.

In: BMC Genomics, Vol. 12, 142, 08.03.2011.

Research output: Contribution to journalArticle

Tian, Zhixi ; Yu, Yanjun ; Lin, Feng ; Yu, Yeisoo ; SanMiguel, Phillip J. ; Wing, Rod A ; McCouch, Susan R. ; Ma, Jianxin ; Jackson, Scott A. / Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis. In: BMC Genomics. 2011 ; Vol. 12.
@article{4da1615055d04e19b3d8fc0cdb1381cf,
title = "Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis",
abstract = "Background: Extensive DNA rearrangement of genic colinearity, as revealed by comparison of orthologous genomic regions, has been shown to be a general concept describing evolutionary dynamics of plant genomes. However, the nature, timing, lineages and adaptation of local genomic rearrangement in closely related species (e.g., within a genus) and haplotype variation of genomic rearrangement within populations have not been well documented.Results: We previously identified a hotspot for genic rearrangement and transposon accumulation in the Orp region of Asian rice (Oryza sativa, AA) by comparison with its orthologous region in sorghum. Here, we report the comparative analysis of this region with its orthologous regions in the wild progenitor species (O. nivara, AA) of Asian rice and African rice (O. glaberrima) using the BB genome Oryza species (O. punctata) as an outgroup, and investigation of transposon insertion sites and a segmental inversion event in the AA genomes at the population level. We found that Orp region was primarily and recently expanded in the Asian rice species O. sativa and O. nivara. LTR-retrotransposons shared by the three AA-genomic regions have been fixed in all the 94 varieties that represent different populations of the AA-genome species/subspecies, indicating their adaptive role in genome differentiation. However, LTR-retrotransposons unique to either O. nivara or O. sativa regions exhibited dramatic haplotype variation regarding their presence or absence between or within populations/subpopulations.Conclusions: The LTR-retrotransposon insertion hotspot in the Orp region was formed recently, independently and concurrently in different AA-genome species, and that the genic rearrangements detected in different species appear to be differentially triggered by transposable elements. This region is located near the end of the short arm of chromosome 8 and contains a high proportion of LTR-retrotransposons similar to observed in the centromeric region of this same chromosome, and thus may represent a genomic region that has recently switched from euchromatic to heterochromatic states. The haplotype variation of LTR-retrotransposon insertions within this region reveals substantial admixture among various subpopulations as established by molecular markers at the whole genome level, and can be used to develop retrotransposon junction markers for simple and rapid classification of O. sativa germplasm.",
author = "Zhixi Tian and Yanjun Yu and Feng Lin and Yeisoo Yu and SanMiguel, {Phillip J.} and Wing, {Rod A} and McCouch, {Susan R.} and Jianxin Ma and Jackson, {Scott A.}",
year = "2011",
month = "3",
day = "8",
doi = "10.1186/1471-2164-12-142",
language = "English (US)",
volume = "12",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis

AU - Tian, Zhixi

AU - Yu, Yanjun

AU - Lin, Feng

AU - Yu, Yeisoo

AU - SanMiguel, Phillip J.

AU - Wing, Rod A

AU - McCouch, Susan R.

AU - Ma, Jianxin

AU - Jackson, Scott A.

PY - 2011/3/8

Y1 - 2011/3/8

N2 - Background: Extensive DNA rearrangement of genic colinearity, as revealed by comparison of orthologous genomic regions, has been shown to be a general concept describing evolutionary dynamics of plant genomes. However, the nature, timing, lineages and adaptation of local genomic rearrangement in closely related species (e.g., within a genus) and haplotype variation of genomic rearrangement within populations have not been well documented.Results: We previously identified a hotspot for genic rearrangement and transposon accumulation in the Orp region of Asian rice (Oryza sativa, AA) by comparison with its orthologous region in sorghum. Here, we report the comparative analysis of this region with its orthologous regions in the wild progenitor species (O. nivara, AA) of Asian rice and African rice (O. glaberrima) using the BB genome Oryza species (O. punctata) as an outgroup, and investigation of transposon insertion sites and a segmental inversion event in the AA genomes at the population level. We found that Orp region was primarily and recently expanded in the Asian rice species O. sativa and O. nivara. LTR-retrotransposons shared by the three AA-genomic regions have been fixed in all the 94 varieties that represent different populations of the AA-genome species/subspecies, indicating their adaptive role in genome differentiation. However, LTR-retrotransposons unique to either O. nivara or O. sativa regions exhibited dramatic haplotype variation regarding their presence or absence between or within populations/subpopulations.Conclusions: The LTR-retrotransposon insertion hotspot in the Orp region was formed recently, independently and concurrently in different AA-genome species, and that the genic rearrangements detected in different species appear to be differentially triggered by transposable elements. This region is located near the end of the short arm of chromosome 8 and contains a high proportion of LTR-retrotransposons similar to observed in the centromeric region of this same chromosome, and thus may represent a genomic region that has recently switched from euchromatic to heterochromatic states. The haplotype variation of LTR-retrotransposon insertions within this region reveals substantial admixture among various subpopulations as established by molecular markers at the whole genome level, and can be used to develop retrotransposon junction markers for simple and rapid classification of O. sativa germplasm.

AB - Background: Extensive DNA rearrangement of genic colinearity, as revealed by comparison of orthologous genomic regions, has been shown to be a general concept describing evolutionary dynamics of plant genomes. However, the nature, timing, lineages and adaptation of local genomic rearrangement in closely related species (e.g., within a genus) and haplotype variation of genomic rearrangement within populations have not been well documented.Results: We previously identified a hotspot for genic rearrangement and transposon accumulation in the Orp region of Asian rice (Oryza sativa, AA) by comparison with its orthologous region in sorghum. Here, we report the comparative analysis of this region with its orthologous regions in the wild progenitor species (O. nivara, AA) of Asian rice and African rice (O. glaberrima) using the BB genome Oryza species (O. punctata) as an outgroup, and investigation of transposon insertion sites and a segmental inversion event in the AA genomes at the population level. We found that Orp region was primarily and recently expanded in the Asian rice species O. sativa and O. nivara. LTR-retrotransposons shared by the three AA-genomic regions have been fixed in all the 94 varieties that represent different populations of the AA-genome species/subspecies, indicating their adaptive role in genome differentiation. However, LTR-retrotransposons unique to either O. nivara or O. sativa regions exhibited dramatic haplotype variation regarding their presence or absence between or within populations/subpopulations.Conclusions: The LTR-retrotransposon insertion hotspot in the Orp region was formed recently, independently and concurrently in different AA-genome species, and that the genic rearrangements detected in different species appear to be differentially triggered by transposable elements. This region is located near the end of the short arm of chromosome 8 and contains a high proportion of LTR-retrotransposons similar to observed in the centromeric region of this same chromosome, and thus may represent a genomic region that has recently switched from euchromatic to heterochromatic states. The haplotype variation of LTR-retrotransposon insertions within this region reveals substantial admixture among various subpopulations as established by molecular markers at the whole genome level, and can be used to develop retrotransposon junction markers for simple and rapid classification of O. sativa germplasm.

UR - http://www.scopus.com/inward/record.url?scp=79952322222&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952322222&partnerID=8YFLogxK

U2 - 10.1186/1471-2164-12-142

DO - 10.1186/1471-2164-12-142

M3 - Article

C2 - 21385395

AN - SCOPUS:79952322222

VL - 12

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

M1 - 142

ER -