Exciton-electron scattering in semiconductor microcavities: Tool for polariton lasing

H. P. Wagner, H. P. Tranitz, M. Reichelt, T. Meier, Stephan W Koch

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We show theoretically that the introduction of a cold electron gas into quantum microcavities induces efficient electron-polariton scattering. This process allows the condensation of the polaritons accumulated at the bottleneck to the final emitting state with a transition time of a few pico-seconds, opening the way to a new generation of low-threshold light-emitting devices.

Original languageEnglish (US)
Pages (from-to)725-730
Number of pages6
JournalPhysica Status Solidi (A) Applied Research
Volume190
Issue number3
DOIs
StatePublished - Apr 2002
Externally publishedYes

Fingerprint

Electron gas
Electron scattering
Microcavities
Excitons
polaritons
lasing
Condensation
electron scattering
excitons
Semiconductor materials
electron gas
condensation
thresholds
scattering
electrons
LDS 751

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Cite this

Exciton-electron scattering in semiconductor microcavities : Tool for polariton lasing. / Wagner, H. P.; Tranitz, H. P.; Reichelt, M.; Meier, T.; Koch, Stephan W.

In: Physica Status Solidi (A) Applied Research, Vol. 190, No. 3, 04.2002, p. 725-730.

Research output: Contribution to journalArticle

Wagner, H. P. ; Tranitz, H. P. ; Reichelt, M. ; Meier, T. ; Koch, Stephan W. / Exciton-electron scattering in semiconductor microcavities : Tool for polariton lasing. In: Physica Status Solidi (A) Applied Research. 2002 ; Vol. 190, No. 3. pp. 725-730.
@article{6a5bd7f39dce4162ac7ee0c2c4ee7321,
title = "Exciton-electron scattering in semiconductor microcavities: Tool for polariton lasing",
abstract = "We show theoretically that the introduction of a cold electron gas into quantum microcavities induces efficient electron-polariton scattering. This process allows the condensation of the polaritons accumulated at the bottleneck to the final emitting state with a transition time of a few pico-seconds, opening the way to a new generation of low-threshold light-emitting devices.",
author = "Wagner, {H. P.} and Tranitz, {H. P.} and M. Reichelt and T. Meier and Koch, {Stephan W}",
year = "2002",
month = "4",
doi = "10.1002/1521-396X(200204)190:3<725::AID-PSSA725>3.0.CO;2-F",
language = "English (US)",
volume = "190",
pages = "725--730",
journal = "Physica Status Solidi (A) Applied Research",
issn = "0031-8965",
publisher = "Wiley-VCH Verlag",
number = "3",

}

TY - JOUR

T1 - Exciton-electron scattering in semiconductor microcavities

T2 - Tool for polariton lasing

AU - Wagner, H. P.

AU - Tranitz, H. P.

AU - Reichelt, M.

AU - Meier, T.

AU - Koch, Stephan W

PY - 2002/4

Y1 - 2002/4

N2 - We show theoretically that the introduction of a cold electron gas into quantum microcavities induces efficient electron-polariton scattering. This process allows the condensation of the polaritons accumulated at the bottleneck to the final emitting state with a transition time of a few pico-seconds, opening the way to a new generation of low-threshold light-emitting devices.

AB - We show theoretically that the introduction of a cold electron gas into quantum microcavities induces efficient electron-polariton scattering. This process allows the condensation of the polaritons accumulated at the bottleneck to the final emitting state with a transition time of a few pico-seconds, opening the way to a new generation of low-threshold light-emitting devices.

UR - http://www.scopus.com/inward/record.url?scp=0036542255&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036542255&partnerID=8YFLogxK

U2 - 10.1002/1521-396X(200204)190:3<725::AID-PSSA725>3.0.CO;2-F

DO - 10.1002/1521-396X(200204)190:3<725::AID-PSSA725>3.0.CO;2-F

M3 - Article

AN - SCOPUS:0036542255

VL - 190

SP - 725

EP - 730

JO - Physica Status Solidi (A) Applied Research

JF - Physica Status Solidi (A) Applied Research

SN - 0031-8965

IS - 3

ER -