Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

Theoretical projections suggest that refuges from exposure can delay insect adaptation to environmentally benign insecticides derived from Bacillus thuringiensis, but experimental tests of this approach have been limited. We tested the refuge tactic by selecting two sets of two colonies of diamondback moth (Plutella xylostella) for resistance to B. thuringiensis subsp. aizawai in the laboratory. In each set, one colony was selected with no refuge and the other with a 10% refuge from exposure to B. thuringiensis subsp. aizawai. Bioassays conducted after nine selections were completed show that mortality caused by B. thuringiensis subsp. aizawai was significantly greater in the refuge colonies than in the no-refuge colonies. These results demonstrate that the refuges delayed the evolution of resistance. Relative to a susceptible colony, final resistance ratios were 19 and eight for the two no-refuge colonies compared to six and five for the refuge colonies. The mean realized heritability of resistance to B. thuringiensis subsp. aizawai was 0.046 for colonies without refuges, and -0.002 for colonies with refuges. Selection with B. thuringiensis subsp. aizawai decreased susceptibility to B, thuringiensis toxin CrylAb, but not to CrylC or B. thuringiensis subsp. kurstaki. Although the ultimate test of refuges will occur in the field, the experimental evidence reported here confirms modelling results indicating that refuges can slow the evolution of insect resistance to B. thuringiensis.

Original languageEnglish (US)
Pages (from-to)605-610
Number of pages6
JournalProceedings of the Royal Society B: Biological Sciences
Volume264
Issue number1381
StatePublished - 1997

Fingerprint

Bacillus thuringiensis subsp. aizawai
Bacillus thuringiensis
Bioassay
Bacilli
Insecticides
refuge
Insects
insect
insects
Plutella xylostella
Bacillus thuringiensis subsp. kurstaki
heritability
toxins
insecticides
bioassays
testing
Moths
Biological Assay

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Agricultural and Biological Sciences (miscellaneous)
  • Earth and Planetary Sciences(all)
  • Environmental Science(all)

Cite this

Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. / Liu, Y. B.; Tabashnik, Bruce E.

In: Proceedings of the Royal Society B: Biological Sciences, Vol. 264, No. 1381, 1997, p. 605-610.

Research output: Contribution to journalArticle

@article{3d912cd13a3b4524a3c28a16d5affc39,
title = "Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis",
abstract = "Theoretical projections suggest that refuges from exposure can delay insect adaptation to environmentally benign insecticides derived from Bacillus thuringiensis, but experimental tests of this approach have been limited. We tested the refuge tactic by selecting two sets of two colonies of diamondback moth (Plutella xylostella) for resistance to B. thuringiensis subsp. aizawai in the laboratory. In each set, one colony was selected with no refuge and the other with a 10{\%} refuge from exposure to B. thuringiensis subsp. aizawai. Bioassays conducted after nine selections were completed show that mortality caused by B. thuringiensis subsp. aizawai was significantly greater in the refuge colonies than in the no-refuge colonies. These results demonstrate that the refuges delayed the evolution of resistance. Relative to a susceptible colony, final resistance ratios were 19 and eight for the two no-refuge colonies compared to six and five for the refuge colonies. The mean realized heritability of resistance to B. thuringiensis subsp. aizawai was 0.046 for colonies without refuges, and -0.002 for colonies with refuges. Selection with B. thuringiensis subsp. aizawai decreased susceptibility to B, thuringiensis toxin CrylAb, but not to CrylC or B. thuringiensis subsp. kurstaki. Although the ultimate test of refuges will occur in the field, the experimental evidence reported here confirms modelling results indicating that refuges can slow the evolution of insect resistance to B. thuringiensis.",
author = "Liu, {Y. B.} and Tabashnik, {Bruce E}",
year = "1997",
language = "English (US)",
volume = "264",
pages = "605--610",
journal = "Philosophical transactions of the Royal Society of London. Series B: Biological sciences",
issn = "0962-8436",
publisher = "Royal Society of London",
number = "1381",

}

TY - JOUR

T1 - Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis

AU - Liu, Y. B.

AU - Tabashnik, Bruce E

PY - 1997

Y1 - 1997

N2 - Theoretical projections suggest that refuges from exposure can delay insect adaptation to environmentally benign insecticides derived from Bacillus thuringiensis, but experimental tests of this approach have been limited. We tested the refuge tactic by selecting two sets of two colonies of diamondback moth (Plutella xylostella) for resistance to B. thuringiensis subsp. aizawai in the laboratory. In each set, one colony was selected with no refuge and the other with a 10% refuge from exposure to B. thuringiensis subsp. aizawai. Bioassays conducted after nine selections were completed show that mortality caused by B. thuringiensis subsp. aizawai was significantly greater in the refuge colonies than in the no-refuge colonies. These results demonstrate that the refuges delayed the evolution of resistance. Relative to a susceptible colony, final resistance ratios were 19 and eight for the two no-refuge colonies compared to six and five for the refuge colonies. The mean realized heritability of resistance to B. thuringiensis subsp. aizawai was 0.046 for colonies without refuges, and -0.002 for colonies with refuges. Selection with B. thuringiensis subsp. aizawai decreased susceptibility to B, thuringiensis toxin CrylAb, but not to CrylC or B. thuringiensis subsp. kurstaki. Although the ultimate test of refuges will occur in the field, the experimental evidence reported here confirms modelling results indicating that refuges can slow the evolution of insect resistance to B. thuringiensis.

AB - Theoretical projections suggest that refuges from exposure can delay insect adaptation to environmentally benign insecticides derived from Bacillus thuringiensis, but experimental tests of this approach have been limited. We tested the refuge tactic by selecting two sets of two colonies of diamondback moth (Plutella xylostella) for resistance to B. thuringiensis subsp. aizawai in the laboratory. In each set, one colony was selected with no refuge and the other with a 10% refuge from exposure to B. thuringiensis subsp. aizawai. Bioassays conducted after nine selections were completed show that mortality caused by B. thuringiensis subsp. aizawai was significantly greater in the refuge colonies than in the no-refuge colonies. These results demonstrate that the refuges delayed the evolution of resistance. Relative to a susceptible colony, final resistance ratios were 19 and eight for the two no-refuge colonies compared to six and five for the refuge colonies. The mean realized heritability of resistance to B. thuringiensis subsp. aizawai was 0.046 for colonies without refuges, and -0.002 for colonies with refuges. Selection with B. thuringiensis subsp. aizawai decreased susceptibility to B, thuringiensis toxin CrylAb, but not to CrylC or B. thuringiensis subsp. kurstaki. Although the ultimate test of refuges will occur in the field, the experimental evidence reported here confirms modelling results indicating that refuges can slow the evolution of insect resistance to B. thuringiensis.

UR - http://www.scopus.com/inward/record.url?scp=0030900704&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030900704&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0030900704

VL - 264

SP - 605

EP - 610

JO - Philosophical transactions of the Royal Society of London. Series B: Biological sciences

JF - Philosophical transactions of the Royal Society of London. Series B: Biological sciences

SN - 0962-8436

IS - 1381

ER -