TY - GEN
T1 - Experimental study on the overtopping behaviour of steep slopes - Transition between mild slopes and vertical walls
AU - Victor, Lander
AU - Troch, Peter
PY - 2012
Y1 - 2012
N2 - Extensive knowledge is available on the overtopping behaviour of traditional smooth impermeable sea defence structures, such as mildly sloping dikes and vertical walls, both typically featuring a high crest freeboard to reduce wave overtopping. A particular design application emerges in the development of wave energy converters of the overtopping type, where maximisation of wave overtopping is required, i.e. smooth impermeable steep sloping structures with low crest freeboards subjected to non-breaking waves. To date, only relatively limited knowledge is available on the overtopping behaviour of those structures. In this study, the average overtopping rate obtained from new experiments has been analysed and compared with existing prediction methods. This study contributes to a better knowledge on the overtopping behaviour of the steep low-crested structures, which is positioned in between that of mildly sloping dikes and vertical walls on the one hand, and in between that of structures with zero crest freeboards and relatively large crest freeboards on the other hand. The existing prediction methods seem unable to predict the significant effects of the slope angle and small relative crest freeboards on the average overtopping rate accurately. Therefore, a new set of prediction formulae is proposed based on the new experiments combined with existing data from literature. These formulae include wave overtopping at vertical walls subjected to non-impacting waves and at structures with zero crest freeboard.
AB - Extensive knowledge is available on the overtopping behaviour of traditional smooth impermeable sea defence structures, such as mildly sloping dikes and vertical walls, both typically featuring a high crest freeboard to reduce wave overtopping. A particular design application emerges in the development of wave energy converters of the overtopping type, where maximisation of wave overtopping is required, i.e. smooth impermeable steep sloping structures with low crest freeboards subjected to non-breaking waves. To date, only relatively limited knowledge is available on the overtopping behaviour of those structures. In this study, the average overtopping rate obtained from new experiments has been analysed and compared with existing prediction methods. This study contributes to a better knowledge on the overtopping behaviour of the steep low-crested structures, which is positioned in between that of mildly sloping dikes and vertical walls on the one hand, and in between that of structures with zero crest freeboards and relatively large crest freeboards on the other hand. The existing prediction methods seem unable to predict the significant effects of the slope angle and small relative crest freeboards on the average overtopping rate accurately. Therefore, a new set of prediction formulae is proposed based on the new experiments combined with existing data from literature. These formulae include wave overtopping at vertical walls subjected to non-impacting waves and at structures with zero crest freeboard.
KW - Low crest freeboard
KW - Non-breaking waves
KW - Steep slope
KW - Wave overtopping
UR - http://www.scopus.com/inward/record.url?scp=85088759868&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088759868&partnerID=8YFLogxK
U2 - 10.9753/icce.v33.structures.61
DO - 10.9753/icce.v33.structures.61
M3 - Conference contribution
AN - SCOPUS:85088759868
SN - 9780989661119
T3 - Proceedings of the Coastal Engineering Conference
BT - Proceedings of the 33rd International Conference on Coastal Engineering 2012, ICCE 2012
PB - American Society of Civil Engineers (ASCE)
T2 - 33rd International Conference on Coastal Engineering 2012, ICCE 2012
Y2 - 1 July 2012 through 6 July 2012
ER -