Fast linearized Bregman iteration for compressive sensing and sparse denoising

Stanley Osher, Yu Mao, Bin Dong, Wotao Yin

Research output: Contribution to journalArticle

160 Citations (Scopus)

Abstract

We propose and analyze an extremely fast, efficient, and simple method for solving the problem: min{∥u∥1:Au=f,u∈Rn}. This method was first described in [J. Darbon and S. Osher, preprint, 2007], with more details in [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and rigorous theory given in [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008]. The motivation was compressive sensing, which now has a vast and exciting history, which seems to have started with Candes, et. al. [E. Candes, J. Romberg and T. Tao, 52(2), 489-509, 2006] and Donoho, [D.L. Donoho, IEEE Trans. Inform. Theory, 52, 1289-1306, 2006]. See [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences 1(1), 143-168, 2008] and [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report, 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008] for a large set of references. Our method introduces an improvement called "kicking" of the very efficient method of [J. Darbon and S. Osher, preprint, 2007] and [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and also applies it to the problem of denoising of undersampled signals. The use of Bregman iteration for denoising of images began in [S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, Multiscale Model. Simul, 4(2), 460-489, 2005] and led to improved results for total variation based methods. Here we apply it to denoise signals, especially essentially sparse signals, which might even be undersampled.

Original languageEnglish (US)
Pages (from-to)93-111
Number of pages19
JournalCommunications in Mathematical Sciences
Volume8
Issue number1
StatePublished - 2010
Externally publishedYes

Fingerprint

Compressive Sensing
Computer aided manufacturing
Denoising
Iteration
Imaging techniques
Imaging
Multiscale Model
Total Variation
Large Set

Keywords

  • ℓ-minimization
  • Basis pursuit
  • Compressed sensing
  • Iterative regularization
  • Sparse denoising

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Fast linearized Bregman iteration for compressive sensing and sparse denoising. / Osher, Stanley; Mao, Yu; Dong, Bin; Yin, Wotao.

In: Communications in Mathematical Sciences, Vol. 8, No. 1, 2010, p. 93-111.

Research output: Contribution to journalArticle

@article{59f2d9d0abd94d959eab10fc42d294cf,
title = "Fast linearized Bregman iteration for compressive sensing and sparse denoising",
abstract = "We propose and analyze an extremely fast, efficient, and simple method for solving the problem: min{∥u∥1:Au=f,u∈Rn}. This method was first described in [J. Darbon and S. Osher, preprint, 2007], with more details in [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and rigorous theory given in [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008]. The motivation was compressive sensing, which now has a vast and exciting history, which seems to have started with Candes, et. al. [E. Candes, J. Romberg and T. Tao, 52(2), 489-509, 2006] and Donoho, [D.L. Donoho, IEEE Trans. Inform. Theory, 52, 1289-1306, 2006]. See [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences 1(1), 143-168, 2008] and [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report, 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008] for a large set of references. Our method introduces an improvement called {"}kicking{"} of the very efficient method of [J. Darbon and S. Osher, preprint, 2007] and [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and also applies it to the problem of denoising of undersampled signals. The use of Bregman iteration for denoising of images began in [S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, Multiscale Model. Simul, 4(2), 460-489, 2005] and led to improved results for total variation based methods. Here we apply it to denoise signals, especially essentially sparse signals, which might even be undersampled.",
keywords = "ℓ-minimization, Basis pursuit, Compressed sensing, Iterative regularization, Sparse denoising",
author = "Stanley Osher and Yu Mao and Bin Dong and Wotao Yin",
year = "2010",
language = "English (US)",
volume = "8",
pages = "93--111",
journal = "Communications in Mathematical Sciences",
issn = "1539-6746",
publisher = "International Press of Boston, Inc.",
number = "1",

}

TY - JOUR

T1 - Fast linearized Bregman iteration for compressive sensing and sparse denoising

AU - Osher, Stanley

AU - Mao, Yu

AU - Dong, Bin

AU - Yin, Wotao

PY - 2010

Y1 - 2010

N2 - We propose and analyze an extremely fast, efficient, and simple method for solving the problem: min{∥u∥1:Au=f,u∈Rn}. This method was first described in [J. Darbon and S. Osher, preprint, 2007], with more details in [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and rigorous theory given in [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008]. The motivation was compressive sensing, which now has a vast and exciting history, which seems to have started with Candes, et. al. [E. Candes, J. Romberg and T. Tao, 52(2), 489-509, 2006] and Donoho, [D.L. Donoho, IEEE Trans. Inform. Theory, 52, 1289-1306, 2006]. See [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences 1(1), 143-168, 2008] and [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report, 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008] for a large set of references. Our method introduces an improvement called "kicking" of the very efficient method of [J. Darbon and S. Osher, preprint, 2007] and [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and also applies it to the problem of denoising of undersampled signals. The use of Bregman iteration for denoising of images began in [S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, Multiscale Model. Simul, 4(2), 460-489, 2005] and led to improved results for total variation based methods. Here we apply it to denoise signals, especially essentially sparse signals, which might even be undersampled.

AB - We propose and analyze an extremely fast, efficient, and simple method for solving the problem: min{∥u∥1:Au=f,u∈Rn}. This method was first described in [J. Darbon and S. Osher, preprint, 2007], with more details in [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and rigorous theory given in [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008]. The motivation was compressive sensing, which now has a vast and exciting history, which seems to have started with Candes, et. al. [E. Candes, J. Romberg and T. Tao, 52(2), 489-509, 2006] and Donoho, [D.L. Donoho, IEEE Trans. Inform. Theory, 52, 1289-1306, 2006]. See [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences 1(1), 143-168, 2008] and [J. Cai, S. Osher and Z. Shen, Math. Comp., to appear, 2008, see also UCLA CAM Report, 08-06] and [J. Cai, S. Osher and Z. Shen, UCLA CAM Report, 08-52, 2008] for a large set of references. Our method introduces an improvement called "kicking" of the very efficient method of [J. Darbon and S. Osher, preprint, 2007] and [W. Yin, S. Osher, D. Goldfarb and J. Darbon, SIAM J. Imaging Sciences, 1(1), 143-168, 2008] and also applies it to the problem of denoising of undersampled signals. The use of Bregman iteration for denoising of images began in [S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, Multiscale Model. Simul, 4(2), 460-489, 2005] and led to improved results for total variation based methods. Here we apply it to denoise signals, especially essentially sparse signals, which might even be undersampled.

KW - ℓ-minimization

KW - Basis pursuit

KW - Compressed sensing

KW - Iterative regularization

KW - Sparse denoising

UR - http://www.scopus.com/inward/record.url?scp=77349126814&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77349126814&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:77349126814

VL - 8

SP - 93

EP - 111

JO - Communications in Mathematical Sciences

JF - Communications in Mathematical Sciences

SN - 1539-6746

IS - 1

ER -