Fast molecular outflow from a dusty star-forming galaxy in the early Universe

J. S. Spilker, M. Aravena, M. Béthermin, S. C. Chapman, C. C. Chen, D. J.M. Cunningham, C. De Breuck, C. Dong, A. H. Gonzalez, C. C. Hayward, Y. D. Hezaveh, K. C. Litke, J. Ma, M. Malkan, Daniel P Marrone, T. B. Miller, W. R. Morningstar, D. Narayanan, K. A. Phadke, J. SreevaniA. A. Stark, J. D. Vieira, A. Weiß

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.

Original languageEnglish (US)
Pages (from-to)1016-1019
Number of pages4
JournalScience
Volume361
Issue number6406
DOIs
StatePublished - Sep 7 2018

Fingerprint

universe
galaxies
stars
star formation
gases
free fall
radiation pressure
clumps
star formation rate
supernovae
dust
heat

ASJC Scopus subject areas

  • General

Cite this

Spilker, J. S., Aravena, M., Béthermin, M., Chapman, S. C., Chen, C. C., Cunningham, D. J. M., ... Weiß, A. (2018). Fast molecular outflow from a dusty star-forming galaxy in the early Universe. Science, 361(6406), 1016-1019. https://doi.org/10.1126/science.aap8900

Fast molecular outflow from a dusty star-forming galaxy in the early Universe. / Spilker, J. S.; Aravena, M.; Béthermin, M.; Chapman, S. C.; Chen, C. C.; Cunningham, D. J.M.; De Breuck, C.; Dong, C.; Gonzalez, A. H.; Hayward, C. C.; Hezaveh, Y. D.; Litke, K. C.; Ma, J.; Malkan, M.; Marrone, Daniel P; Miller, T. B.; Morningstar, W. R.; Narayanan, D.; Phadke, K. A.; Sreevani, J.; Stark, A. A.; Vieira, J. D.; Weiß, A.

In: Science, Vol. 361, No. 6406, 07.09.2018, p. 1016-1019.

Research output: Contribution to journalArticle

Spilker, JS, Aravena, M, Béthermin, M, Chapman, SC, Chen, CC, Cunningham, DJM, De Breuck, C, Dong, C, Gonzalez, AH, Hayward, CC, Hezaveh, YD, Litke, KC, Ma, J, Malkan, M, Marrone, DP, Miller, TB, Morningstar, WR, Narayanan, D, Phadke, KA, Sreevani, J, Stark, AA, Vieira, JD & Weiß, A 2018, 'Fast molecular outflow from a dusty star-forming galaxy in the early Universe', Science, vol. 361, no. 6406, pp. 1016-1019. https://doi.org/10.1126/science.aap8900
Spilker JS, Aravena M, Béthermin M, Chapman SC, Chen CC, Cunningham DJM et al. Fast molecular outflow from a dusty star-forming galaxy in the early Universe. Science. 2018 Sep 7;361(6406):1016-1019. https://doi.org/10.1126/science.aap8900
Spilker, J. S. ; Aravena, M. ; Béthermin, M. ; Chapman, S. C. ; Chen, C. C. ; Cunningham, D. J.M. ; De Breuck, C. ; Dong, C. ; Gonzalez, A. H. ; Hayward, C. C. ; Hezaveh, Y. D. ; Litke, K. C. ; Ma, J. ; Malkan, M. ; Marrone, Daniel P ; Miller, T. B. ; Morningstar, W. R. ; Narayanan, D. ; Phadke, K. A. ; Sreevani, J. ; Stark, A. A. ; Vieira, J. D. ; Weiß, A. / Fast molecular outflow from a dusty star-forming galaxy in the early Universe. In: Science. 2018 ; Vol. 361, No. 6406. pp. 1016-1019.
@article{bea6399aa46f4b22aee67f9974b223ba,
title = "Fast molecular outflow from a dusty star-forming galaxy in the early Universe",
abstract = "Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.",
author = "Spilker, {J. S.} and M. Aravena and M. B{\'e}thermin and Chapman, {S. C.} and Chen, {C. C.} and Cunningham, {D. J.M.} and {De Breuck}, C. and C. Dong and Gonzalez, {A. H.} and Hayward, {C. C.} and Hezaveh, {Y. D.} and Litke, {K. C.} and J. Ma and M. Malkan and Marrone, {Daniel P} and Miller, {T. B.} and Morningstar, {W. R.} and D. Narayanan and Phadke, {K. A.} and J. Sreevani and Stark, {A. A.} and Vieira, {J. D.} and A. Wei{\ss}",
year = "2018",
month = "9",
day = "7",
doi = "10.1126/science.aap8900",
language = "English (US)",
volume = "361",
pages = "1016--1019",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "6406",

}

TY - JOUR

T1 - Fast molecular outflow from a dusty star-forming galaxy in the early Universe

AU - Spilker, J. S.

AU - Aravena, M.

AU - Béthermin, M.

AU - Chapman, S. C.

AU - Chen, C. C.

AU - Cunningham, D. J.M.

AU - De Breuck, C.

AU - Dong, C.

AU - Gonzalez, A. H.

AU - Hayward, C. C.

AU - Hezaveh, Y. D.

AU - Litke, K. C.

AU - Ma, J.

AU - Malkan, M.

AU - Marrone, Daniel P

AU - Miller, T. B.

AU - Morningstar, W. R.

AU - Narayanan, D.

AU - Phadke, K. A.

AU - Sreevani, J.

AU - Stark, A. A.

AU - Vieira, J. D.

AU - Weiß, A.

PY - 2018/9/7

Y1 - 2018/9/7

N2 - Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.

AB - Galaxies grow inefficiently, with only a small percentage of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae, or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, 1 billion years after the Big Bang. The outflow reaches velocities up to 800 kilometers per second relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of 2 of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.

UR - http://www.scopus.com/inward/record.url?scp=85052891743&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052891743&partnerID=8YFLogxK

U2 - 10.1126/science.aap8900

DO - 10.1126/science.aap8900

M3 - Article

C2 - 30190403

AN - SCOPUS:85052891743

VL - 361

SP - 1016

EP - 1019

JO - Science

JF - Science

SN - 0036-8075

IS - 6406

ER -